Этот материал находится в платной подписке. Оформи премиум подписку и смотри или слушай Data Platform & Pipeline Design, а также все другие курсы, прямо сейчас!
Премиум
  • Урок 1. 00:03:14
    Introduction & Contents
  • Урок 2. 00:10:12
    The Platform Blueprint
  • Урок 3. 00:02:45
    Data Engineering Tools Guide
  • Урок 4. 00:06:19
    End to End Pipeline Example
  • Урок 5. 00:03:43
    Push Ingestion Pipelines
  • Урок 6. 00:03:35
    Pull Ingestion Pipelines
  • Урок 7. 00:03:08
    Batch Pipelines
  • Урок 8. 00:03:35
    Streaming Pipelines
  • Урок 9. 00:02:27
    Stream Analytics
  • Урок 10. 00:04:03
    Lambda Architecture
  • Урок 11. 00:03:48
    Visualization Pipelines
  • Урок 12. 00:06:22
    Visualization with Hive & Spark on Hadoop
  • Урок 13. 00:03:28
    Visualization Data via Spark Thrift Server
  • Урок 14. 00:01:17
    Part 2 introduction
  • Урок 15. 00:02:58
    Core Use Cases in Platform Design: Transactions, Analytics, and Reverse ETL
  • Урок 16. 00:03:32
    Blueprint Recap: Mapping Tools Across the Modern Data Platform
  • Урок 17. 00:08:11
    Demystifying Event-Driven, Batch, and Streaming Workflows in Data Platforms
  • Урок 18. 00:04:56
    Micro-Batching vs. Streaming: What’s the Real Difference?
  • Урок 19. 00:06:29
    Connecting Sources to Goals: Batch and Stream Processing in a Data Platform
  • Урок 20. 00:03:10
    Building Blocks of a Modern Data Platform: Components, Storage, and Processing
  • Урок 21. 00:10:10
    Before the Tech: How Data and Goals Shape Your Data Platform
  • Урок 22. 00:03:35
    Lakehouse Architecture Explained: From Raw Files to Transactional Tables
  • Урок 23. 00:06:24
    How Machine Learning Fits into Data Platforms: Training, Inference, and Deployment
  • Урок 24. 00:06:07
    From Embeddings to Answers: Understanding Semantic Search and Retrieval-Augmented Generation
  • Урок 25. 00:03:11
    Testing in the Modern Data Platform: From Ingestion to Transformation
  • Урок 26. 00:02:26
    Understanding the Medallion Architecture: Bronze, Silver, and Gold Layers in Data Warehousing