-
Урок 1.
00:06:42
COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP!
-
Урок 2.
00:18:22
Installation and Environment Setup
-
Урок 3.
00:00:45
Introduction to NumPy
-
Урок 4.
00:10:46
NumPy Arrays
-
Урок 5.
00:08:11
NumPy Arrays Part Two
-
Урок 6.
00:11:36
Numpy Index Selection
-
Урок 7.
00:06:47
NumPy Operations
-
Урок 8.
00:01:19
Numpy Exercises
-
Урок 9.
00:07:06
Numpy Exercises - Solutions
-
Урок 10.
00:01:11
Pandas Overview
-
Урок 11.
00:10:02
Pandas Series
-
Урок 12.
00:13:25
Pandas DataFrames - Part One
-
Урок 13.
00:11:10
Pandas DataFrames - Part Two
-
Урок 14.
00:05:44
GroupBy Operations
-
Урок 15.
00:09:22
Pandas Operations
-
Урок 16.
00:10:19
Data Input and Output
-
Урок 17.
00:03:39
Pandas Exercises
-
Урок 18.
00:08:36
Pandas Exercises - Solutions
-
Урок 19.
00:03:21
PyTorch Basics Introduction
-
Урок 20.
00:08:11
Tensor Basics
-
Урок 21.
00:15:13
Tensor Basics - Part Two
-
Урок 22.
00:13:30
Tensor Operations
-
Урок 23.
00:06:28
Tensor Operations - Part Two
-
Урок 24.
00:02:34
PyTorch Basics - Exercise
-
Урок 25.
00:05:22
PyTorch Basics - Exercise Solutions
-
Урок 26.
00:03:41
What is Machine Learning?
-
Урок 27.
00:08:22
Supervised Learning
-
Урок 28.
00:08:00
Overfitting
-
Урок 29.
00:16:38
Evaluating Performance - Classification Error Metrics
-
Урок 30.
00:05:37
Evaluating Performance - Regression Error Metrics
-
Урок 31.
00:04:45
Unsupervised Learning
-
Урок 32.
00:01:46
Introduction to ANN Section
-
Урок 33.
00:10:40
Theory - Perceptron Model
-
Урок 34.
00:07:20
Theory - Neural Network
-
Урок 35.
00:10:40
Theory - Activation Functions
-
Урок 36.
00:10:35
Multi-Class Classification
-
Урок 37.
00:18:14
Theory - Cost Functions and Gradient Descent
-
Урок 38.
00:14:48
Theory - BackPropagation
-
Урок 39.
00:12:24
PyTorch Gradients
-
Урок 40.
00:11:02
Linear Regression with PyTorch
-
Урок 41.
00:20:32
Linear Regression with PyTorch - Part Two
-
Урок 42.
00:16:00
DataSets with PyTorch
-
Урок 43.
00:11:35
Basic Pytorch ANN - Part One
-
Урок 44.
00:15:36
Basic PyTorch ANN - Part Two
-
Урок 45.
00:14:24
Basic PyTorch ANN - Part Three
-
Урок 46.
00:06:53
Introduction to Full ANN with PyTorch
-
Урок 47.
00:19:36
Full ANN Code Along - Regression - Part One - Feature Engineering
-
Урок 48.
00:19:43
Full ANN Code Along - Regression - Part 2 - Categorical and Continuous Features
-
Урок 49.
00:17:10
Full ANN Code Along - Regression - Part Three - Tabular Model
-
Урок 50.
00:16:43
Full ANN Code Along - Regression - Part Four - Training and Evaluation
-
Урок 51.
00:06:53
Full ANN Code Along - Classification Example
-
Урок 52.
00:05:31
ANN - Exercise Overview
-
Урок 53.
00:16:26
ANN - Exercise Solutions
-
Урок 54.
00:01:57
Introduction to CNNs
-
Урок 55.
00:03:26
Understanding the MNIST data set
-
Урок 56.
00:19:23
ANN with MNIST - Part One - Data
-
Урок 57.
00:10:35
ANN with MNIST - Part Two - Creating the Network
-
Урок 58.
00:15:29
ANN with MNIST - Part Three - Training
-
Урок 59.
00:09:16
ANN with MNIST - Part Four - Evaluation
-
Урок 60.
00:11:36
Image Filters and Kernels
-
Урок 61.
00:14:02
Convolutional Layers
-
Урок 62.
00:06:48
Pooling Layers
-
Урок 63.
00:02:12
MNIST Data Revisited
-
Урок 64.
00:18:22
MNIST with CNN - Code Along - Part One
-
Урок 65.
00:18:19
MNIST with CNN - Code Along - Part Two
-
Урок 66.
00:08:58
MNIST with CNN - Code Along - Part Three
-
Урок 67.
00:07:14
CIFAR-10 DataSet with CNN - Code Along - Part One
-
Урок 68.
00:18:41
CIFAR-10 DataSet with CNN - Code Along - Part Two
-
Урок 69.
00:16:13
Loading Real Image Data - Part One
-
Урок 70.
00:18:27
Loading Real Image Data - Part Two
-
Урок 71.
00:22:21
CNN on Custom Images - Part One - Loading Data
-
Урок 72.
00:13:10
CNN on Custom Images - Part Two - Training and Evaluating Model
-
Урок 73.
00:14:15
CNN on Custom Images - Part Three - PreTrained Networks
-
Урок 74.
00:02:50
CNN Exercise
-
Урок 75.
00:07:53
CNN Exercise Solutions
-
Урок 76.
00:02:01
Introduction to Recurrent Neural Networks
-
Урок 77.
00:07:42
RNN Basic Theory
-
Урок 78.
00:06:48
Vanishing Gradients
-
Урок 79.
00:11:24
LSTMS and GRU
-
Урок 80.
00:07:50
RNN Batches Theory
-
Урок 81.
00:12:12
RNN - Creating Batches with Data
-
Урок 82.
00:12:57
Basic RNN - Creating the LSTM Model
-
Урок 83.
00:20:29
Basic RNN - Training and Forecasting
-
Урок 84.
00:14:36
RNN on a Time Series - Part One
-
Урок 85.
00:18:46
RNN on a Time Series - Part Two
-
Урок 86.
00:04:15
RNN Exercise
-
Урок 87.
00:11:32
RNN Exercise - Solutions
-
Урок 88.
00:13:08
Why do we need GPUs?
-
Урок 89.
00:17:41
Using GPU for PyTorch
-
Урок 90.
00:02:38
Introduction to NLP with PyTorch
-
Урок 91.
00:15:50
Encoding Text Data
-
Урок 92.
00:14:41
Generating Training Batches
-
Урок 93.
00:12:35
Creating the LSTM Model
-
Урок 94.
00:11:55
Training the LSTM Model
-
Урок 95.
00:10:32
Generating Predictions