Этот материал находится в платной подписке. Оформи премиум подписку и смотри или слушай Java Spring & Apache Kafka Bootcamp - Basic to Complete, а также все другие курсы, прямо сейчас!
Премиум
  • Урок 1. 00:01:13
    Welcome to This Course
  • Урок 2. 00:04:17
    Course Structure
  • Урок 3. 00:00:36
    Download Source Code & Scripts
  • Урок 4. 00:05:57
    Tips : How To Get Maximum Value From This Course
  • Урок 5. 00:06:31
    Messaging System
  • Урок 6. 00:06:33
    Kafka Introduction
  • Урок 7. 00:07:15
    Java & Spring
  • Урок 8. 00:00:46
    Download Java
  • Урок 9. 00:01:21
    Install Java
  • Урок 10. 00:00:34
    Kafka Installation for This Course
  • Урок 11. 00:03:11
    Docker Introduction
  • Урок 12. 00:05:49
    Install Kafka Docker
  • Урок 13. 00:00:20
    Download Eclipse
  • Урок 14. 00:01:07
    Install Eclipse
  • Урок 15. 00:00:26
    Kafka Basic Concepts
  • Урок 16. 00:02:00
    Kafka Analogy
  • Урок 17. 00:07:07
    Topic, Partition & Offset
  • Урок 18. 00:04:10
    Producer
  • Урок 19. 00:05:13
    Consumer & Consumer Group
  • Урок 20. 00:02:59
    Consumer Offset & Delivery Semantic
  • Урок 21. 00:00:57
    Zookeeper
  • Урок 22. 00:07:17
    Spring Boot
  • Урок 23. 00:04:08
    Hello Kafka - Topic & Partition
  • Урок 24. 00:07:42
    Hello Kafka - Java Spring Code
  • Урок 25. 00:08:17
    Consumer is Real Time Indeed
  • Урок 26. 00:03:56
    "Fixing" Consumer
  • Урок 27. 00:06:37
    Producing Message With Key
  • Урок 28. 00:11:27
    Multiple Consumers for Each Topic
  • Урок 29. 00:02:14
    Why JSON?
  • Урок 30. 00:06:56
    Producing JSON Message
  • Урок 31. 00:03:07
    Customize JSON Format
  • Урок 32. 00:04:07
    Consuming JSON Message
  • Урок 33. 00:18:04
    Consuming with Consumer Groups - Create Producer
  • Урок 34. 00:07:37
    Consuming with Consumer Groups - Create Consumer
  • Урок 35. 00:06:02
    Rebalancing
  • Урок 36. 00:05:55
    Kafka Configuration
  • Урок 37. 00:19:30
    Message Filter
  • Урок 38. 00:15:31
    Idempotency
  • Урок 39. 00:11:18
    Idempotency Alternative
  • Урок 40. 00:12:31
    KafkaListener Error Handler
  • Урок 41. 00:13:48
    Global Error Handler
  • Урок 42. 00:14:46
    Retrying Consumer
  • Урок 43. 00:14:58
    Dead Letter Topic
  • Урок 44. 00:05:22
    Non Blocking Retry
  • Урок 45. 00:09:15
    Scheduling Consumer
  • Урок 46. 00:05:48
    Rabbitmq vs Kafka
  • Урок 47. 00:04:18
    What We Will Build
  • Урок 48. 00:06:45
    Organizing Source Code
  • Урок 49. 00:07:37
    Setting Up The Projects
  • Урок 50. 00:01:37
    Automatic Create Topics From Code
  • Урок 51. 00:05:01
    Order App - Database
  • Урок 52. 00:04:19
    Order App - Kafka Producer
  • Урок 53. 00:04:33
    Handle Kafka Publish Result - Kafka Producer Callback
  • Урок 54. 00:21:43
    Order App - API & Finalize App
  • Урок 55. 00:02:28
    Order App - Test the App
  • Урок 56. 00:03:23
    Pattern App - Kafka Consumer
  • Урок 57. 00:08:33
    Order App - Promotion Publisher
  • Урок 58. 00:01:17
    Order App - Discount Publisher
  • Урок 59. 00:03:01
    Storage App - Kafka Consumer
  • Урок 60. 00:04:12
    Order App - Add Header To Kafka Message
  • Урок 61. 00:06:19
    Reward App - Kafka Consumer
  • Урок 62. 00:06:16
    Request - Reply in Kafka
  • Урок 63. 00:02:32
    Introducing Kafka Stream
  • Урок 64. 00:06:20
    Stream Processing
  • Урок 65. 00:02:56
    Kafka Stream Concept
  • Урок 66. 00:02:41
    Prepare For Kafka Stream
  • Урок 67. 00:00:48
    Notes for Windows User
  • Урок 68. 00:12:09
    Hello Kafka Stream
  • Урок 69. 00:05:40
    String Serde
  • Урок 70. 00:04:41
    Spring JSON Serde
  • Урок 71. 00:08:32
    Custom JSON Serde
  • Урок 72. 00:02:31
    Stream & Table
  • Урок 73. 00:01:32
    Log Compaction
  • Урок 74. 00:08:57
    Kafka Stream Operations (Stateless)
  • Урок 75. 00:01:30
    Kafka Stream Topology
  • Урок 76. 00:07:41
    First Step
  • Урок 77. 00:13:07
    Sink Processors
  • Урок 78. 00:07:47
    Additional Requirements
  • Урок 79. 00:03:43
    Branching Alternative
  • Урок 80. 00:02:24
    Newer Branch Syntax
  • Урок 81. 00:02:39
    Reward Each Location
  • Урок 82. 00:03:54
    Calling API or Other Process
  • Урок 83. 00:03:15
    Further Fraud Processing
  • Урок 84. 00:06:32
    Are We Good Enough?
  • Урок 85. 00:02:17
    Who Owns This Feedback?
  • Урок 86. 00:07:57
    Good Feedback or Bad Feedback?
  • Урок 87. 00:02:42
    Group Using Table
  • Урок 88. 00:01:04
    Delay on Table
  • Урок 89. 00:06:08
    Send and Continue
  • Урок 90. 00:02:59
    Overall Good (or Bad)
  • Урок 91. 00:05:11
    Web & Mobile
  • Урок 92. 00:13:43
    Cart & Wishlist
  • Урок 93. 00:09:30
    Most Recent Data Feed
  • Урок 94. 00:02:05
    Stream & State
  • Урок 95. 00:02:13
    Kafka Stream Stateful Operations
  • Урок 96. 00:08:02
    Timestamp
  • Урок 97. 00:15:30
    Average Rating
  • Урок 98. 00:11:15
    Detailed Rating
  • Урок 99. 00:07:40
    Summing Records
  • Урок 100. 00:01:31
    Subtracting Value
  • Урок 101. 00:01:06
    Using Reduce
  • Урок 102. 00:06:31
    Timestamp Extractor
  • Урок 103. 00:02:36
    Windowing
  • Урок 104. 00:05:08
    Tumbling Time Window
  • Урок 105. 00:01:58
    Hopping Time Window
  • Урок 106. 00:04:02
    Join - Theory
  • Урок 107. 00:05:52
    Join - Stream / Stream
  • Урок 108. 00:12:08
    Inner Join - Stream / Stream
  • Урок 109. 00:01:27
    Left Join - Stream / Stream
  • Урок 110. 00:01:20
    Outer Join - Stream / Stream
  • Урок 111. 00:13:00
    Inner Join - Table / Table
  • Урок 112. 00:01:57
    Left Join - Table / Table
  • Урок 113. 00:01:19
    Outer Join - Table / Table
  • Урок 114. 00:01:42
    Stream to Table
  • Урок 115. 00:11:25
    Inner Join - Stream / Table
  • Урок 116. 00:02:51
    Left Join - Stream / Table
  • Урок 117. 00:08:30
    Stream / Global Table Join - Part 1
  • Урок 118. 00:07:12
    Stream / Table Co-Partition
  • Урок 119. 00:01:41
    Stream / Global Table Join - Part 2
  • Урок 120. 00:04:12
    Exactly Once Semantic
  • Урок 121. 00:01:43
    Enabling Exactly Once
  • Урок 122. 00:04:49
    Message In, Message Out
  • Урок 123. 00:08:46
    Introducing Kafka Connect
  • Урок 124. 00:03:31
    Kafka Connect on Docker
  • Урок 125. 00:02:28
    Sample Use Cases
  • Урок 126. 00:09:27
    File Source
  • Урок 127. 00:06:30
    Database Sink
  • Урок 128. 00:04:13
    SFTP Sink
  • Урок 129. 00:04:40
    Change Data Capture
  • Урок 130. 00:13:48
    CDC PostgreSQL Connector
  • Урок 131. 00:03:14
    PostgreSQL Sink Connector
  • Урок 132. 00:15:35
    Marketing Consumer
  • Урок 133. 00:02:33
    It’s not A One-Stop-Solution
  • Урок 134. 00:03:43
    Database Source
  • Урок 135. 00:02:51
    HTTP Source
  • Урок 136. 00:07:35
    Custom Source
  • Урок 137. 00:03:29
    Elasticsearch Sink
  • Урок 138. 00:02:29
    Data Format Differences
  • Урок 139. 00:05:31
    Code Overview
  • Урок 140. 00:26:20
    Code Hands on
  • Урок 141. 00:02:06
    Tip : Override Converter
  • Урок 142. 00:03:29
    Elasticsearch Sink
  • Урок 143. 00:01:13
    Kafka User Interface
  • Урок 144. 00:10:46
    Sneak Peek on Conduktor
  • Урок 145. 00:01:28
    What We Will Learn
  • Урок 146. 00:01:00
    Setup More Kafka Stack
  • Урок 147. 00:04:00
    JSON Drawback
  • Урок 148. 00:02:27
    Tip : Binary Data
  • Урок 149. 00:02:30
    Tip : Large Message
  • Урок 150. 00:03:04
    The Need for Schema
  • Урок 151. 00:02:59
    Schema Registry
  • Урок 152. 00:06:46
    What Is Avro
  • Урок 153. 00:09:17
    Avro Theory
  • Урок 154. 00:08:53
    Hello Avro
  • Урок 155. 00:05:05
    Generic Avro
  • Урок 156. 00:15:10
    Specific Avro
  • Урок 157. 00:08:21
    Avro From Existing
  • Урок 158. 00:03:19
    Nested Record
  • Урок 159. 00:04:16
    From JSON to Avro
  • Урок 160. 00:02:14
    Avro Tool
  • Урок 161. 00:09:34
    What is Schema Evolution
  • Урок 162. 00:06:05
    Schema Evolution - Hands On
  • Урок 163. 00:03:04
    What is Schema Registry
  • Урок 164. 00:00:59
    Schema Registry - User Interface
  • Урок 165. 00:02:04
    Schema Registry - Hands On
  • Урок 166. 00:04:04
    Getting Started
  • Урок 167. 00:05:10
    Avro Producer 1
  • Урок 168. 00:02:09
    Avro Consumer 1
  • Урок 169. 00:04:31
    Avro Producer & Consumer 2
  • Урок 170. 00:13:22
    Kafka Stream
  • Урок 171. 00:06:38
    Backward Compatible Hands On
  • Урок 172. 00:05:27
    Forward Compatible Hands On
  • Урок 173. 00:01:57
    Full Compatible & Tips
  • Урок 174. 00:01:41
    Quick Look on Schema Reqistry API
  • Урок 175. 00:02:24
    Overview
  • Урок 176. 00:04:19
    Source Connector & Consumer
  • Урок 177. 00:03:17
    Producer
  • Урок 178. 00:01:06
    Sink Connector
  • Урок 179. 00:03:19
    What Is Kafka REST Proxy
  • Урок 180. 00:01:41
    Cluster & Broker
  • Урок 181. 00:00:50
    Topic
  • Урок 182. 00:01:38
    Produce Binary
  • Урок 183. 00:02:15
    Consume Binary
  • Урок 184. 00:01:05
    Produce & Consume JSON
  • Урок 185. 00:01:08
    Produce & Consume Avro
  • Урок 186. 00:07:15
    Introduction to ksqlDB
  • Урок 187. 00:01:14
    Interact With ksqlDB
  • Урок 188. 00:00:46
    ksqlDB Syntax Reference
  • Урок 189. 00:03:00
    Use Cases
  • Урок 190. 00:08:25
    Hello ksqlDB
  • Урок 191. 00:01:47
    Basic ksqlDB Stream
  • Урок 192. 00:24:29
    Data Types
  • Урок 193. 00:08:34
    Stream & Table Key
  • Урок 194. 00:03:51
    First Step
  • Урок 195. 00:00:55
    Row Key Alternative
  • Урок 196. 00:03:11
    Additional Requirements
  • Урок 197. 00:01:23
    Reward Each Location
  • Урок 198. 00:01:40
    Run Script File
  • Урок 199. 00:01:22
    Calling API or Other Process
  • Урок 200. 00:01:00
    Further Fraud Processing
  • Урок 201. 00:00:45
    KsqlDB REST API
  • Урок 202. 00:04:00
    Are We Good Enough?
  • Урок 203. 00:00:36
    Who Owns This Feedback?
  • Урок 204. 00:00:36
    Good Feedback or Bad Feedback?
  • Урок 205. 00:02:36
    Group Using Table
  • Урок 206. 00:00:21
    Send and Continue
  • Урок 207. 00:01:29
    Overall Good (or Bad)
  • Урок 208. 00:04:58
    Insert Data Using KsqlDB
  • Урок 209. 00:02:31
    Web & Mobile
  • Урок 210. 00:06:12
    Cart & Wishlist
  • Урок 211. 00:01:54
    Pull Query
  • Урок 212. 00:01:59
    Most Recent Data Feed
  • Урок 213. 00:01:40
    Timestamp
  • Урок 214. 00:00:49
    Average Rating
  • Урок 215. 00:00:47
    Detailed Rating
  • Урок 216. 00:01:14
    Summing Records / Subtracting Value
  • Урок 217. 00:01:52
    Timestamp Extractor
  • Урок 218. 00:01:49
    Tumbling Time Window
  • Урок 219. 00:01:22
    Hopping Time Window
  • Урок 220. 00:01:37
    Inner Join Stream / Stream
  • Урок 221. 00:01:23
    Left Join Stream / Stream
  • Урок 222. 00:01:42
    Outer Join Stream / Stream
  • Урок 223. 00:02:01
    Inner Join Table / Table
  • Урок 224. 00:01:17
    Left Join Table / Table
  • Урок 225. 00:01:15
    Outer Join Table / Table
  • Урок 226. 00:01:23
    Inner Join Stream / Table
  • Урок 227. 00:01:02
    Left Join Stream / Table
  • Урок 228. 00:02:29
    Stream / Table Co-Partition
  • Урок 229. 00:00:26
    Enabling Exactly Once
  • Урок 230. 00:11:23
    User Defined Function (UDF)
  • Урок 231. 00:09:10
    User Defined Tabular Function (UDTF)
  • Урок 232. 00:09:17
    User Defined Aggregation Function (UDAF)
  • Урок 233. 00:00:55
    ksqlDB & Schema Registry
  • Урок 234. 00:01:36
    Avro on ksqlDB
  • Урок 235. 00:01:33
    Writing Avro Schema
  • Урок 236. 00:01:44
    Avro-Json Conversion
  • Урок 237. 00:01:40
    KsqlDB & Kafka Connect
  • Урок 238. 00:21:02
    KsqlDB Java Client
  • Урок 239. 00:03:51
    Course Wrap Up