Этот материал находится в платной подписке. Оформи премиум подписку и смотри или слушай Java Spring & Apache Kafka Bootcamp - Basic to Complete, а также все другие курсы, прямо сейчас!
Премиум
  1. Урок 1. 00:01:13
    Welcome to This Course
  2. Урок 2. 00:04:17
    Course Structure
  3. Урок 3. 00:00:36
    Download Source Code & Scripts
  4. Урок 4. 00:05:57
    Tips : How To Get Maximum Value From This Course
  5. Урок 5. 00:06:31
    Messaging System
  6. Урок 6. 00:06:33
    Kafka Introduction
  7. Урок 7. 00:07:15
    Java & Spring
  8. Урок 8. 00:00:46
    Download Java
  9. Урок 9. 00:01:21
    Install Java
  10. Урок 10. 00:00:34
    Kafka Installation for This Course
  11. Урок 11. 00:03:11
    Docker Introduction
  12. Урок 12. 00:05:49
    Install Kafka Docker
  13. Урок 13. 00:00:20
    Download Eclipse
  14. Урок 14. 00:01:07
    Install Eclipse
  15. Урок 15. 00:00:26
    Kafka Basic Concepts
  16. Урок 16. 00:02:00
    Kafka Analogy
  17. Урок 17. 00:07:07
    Topic, Partition & Offset
  18. Урок 18. 00:04:10
    Producer
  19. Урок 19. 00:05:13
    Consumer & Consumer Group
  20. Урок 20. 00:02:59
    Consumer Offset & Delivery Semantic
  21. Урок 21. 00:00:57
    Zookeeper
  22. Урок 22. 00:07:17
    Spring Boot
  23. Урок 23. 00:04:08
    Hello Kafka - Topic & Partition
  24. Урок 24. 00:07:42
    Hello Kafka - Java Spring Code
  25. Урок 25. 00:08:17
    Consumer is Real Time Indeed
  26. Урок 26. 00:03:56
    "Fixing" Consumer
  27. Урок 27. 00:06:37
    Producing Message With Key
  28. Урок 28. 00:11:27
    Multiple Consumers for Each Topic
  29. Урок 29. 00:02:14
    Why JSON?
  30. Урок 30. 00:06:56
    Producing JSON Message
  31. Урок 31. 00:03:07
    Customize JSON Format
  32. Урок 32. 00:04:07
    Consuming JSON Message
  33. Урок 33. 00:18:04
    Consuming with Consumer Groups - Create Producer
  34. Урок 34. 00:07:37
    Consuming with Consumer Groups - Create Consumer
  35. Урок 35. 00:06:02
    Rebalancing
  36. Урок 36. 00:05:55
    Kafka Configuration
  37. Урок 37. 00:19:30
    Message Filter
  38. Урок 38. 00:15:31
    Idempotency
  39. Урок 39. 00:11:18
    Idempotency Alternative
  40. Урок 40. 00:12:31
    KafkaListener Error Handler
  41. Урок 41. 00:13:48
    Global Error Handler
  42. Урок 42. 00:14:46
    Retrying Consumer
  43. Урок 43. 00:14:58
    Dead Letter Topic
  44. Урок 44. 00:05:22
    Non Blocking Retry
  45. Урок 45. 00:09:15
    Scheduling Consumer
  46. Урок 46. 00:05:48
    Rabbitmq vs Kafka
  47. Урок 47. 00:04:18
    What We Will Build
  48. Урок 48. 00:06:45
    Organizing Source Code
  49. Урок 49. 00:07:37
    Setting Up The Projects
  50. Урок 50. 00:01:37
    Automatic Create Topics From Code
  51. Урок 51. 00:05:01
    Order App - Database
  52. Урок 52. 00:04:19
    Order App - Kafka Producer
  53. Урок 53. 00:04:33
    Handle Kafka Publish Result - Kafka Producer Callback
  54. Урок 54. 00:21:43
    Order App - API & Finalize App
  55. Урок 55. 00:02:28
    Order App - Test the App
  56. Урок 56. 00:03:23
    Pattern App - Kafka Consumer
  57. Урок 57. 00:08:33
    Order App - Promotion Publisher
  58. Урок 58. 00:01:17
    Order App - Discount Publisher
  59. Урок 59. 00:03:01
    Storage App - Kafka Consumer
  60. Урок 60. 00:04:12
    Order App - Add Header To Kafka Message
  61. Урок 61. 00:06:19
    Reward App - Kafka Consumer
  62. Урок 62. 00:06:16
    Request - Reply in Kafka
  63. Урок 63. 00:02:32
    Introducing Kafka Stream
  64. Урок 64. 00:06:20
    Stream Processing
  65. Урок 65. 00:02:56
    Kafka Stream Concept
  66. Урок 66. 00:02:41
    Prepare For Kafka Stream
  67. Урок 67. 00:00:48
    Notes for Windows User
  68. Урок 68. 00:12:09
    Hello Kafka Stream
  69. Урок 69. 00:05:40
    String Serde
  70. Урок 70. 00:04:41
    Spring JSON Serde
  71. Урок 71. 00:08:32
    Custom JSON Serde
  72. Урок 72. 00:02:31
    Stream & Table
  73. Урок 73. 00:01:32
    Log Compaction
  74. Урок 74. 00:08:57
    Kafka Stream Operations (Stateless)
  75. Урок 75. 00:01:30
    Kafka Stream Topology
  76. Урок 76. 00:07:41
    First Step
  77. Урок 77. 00:13:07
    Sink Processors
  78. Урок 78. 00:07:47
    Additional Requirements
  79. Урок 79. 00:03:43
    Branching Alternative
  80. Урок 80. 00:02:24
    Newer Branch Syntax
  81. Урок 81. 00:02:39
    Reward Each Location
  82. Урок 82. 00:03:54
    Calling API or Other Process
  83. Урок 83. 00:03:15
    Further Fraud Processing
  84. Урок 84. 00:06:32
    Are We Good Enough?
  85. Урок 85. 00:02:17
    Who Owns This Feedback?
  86. Урок 86. 00:07:57
    Good Feedback or Bad Feedback?
  87. Урок 87. 00:02:42
    Group Using Table
  88. Урок 88. 00:01:04
    Delay on Table
  89. Урок 89. 00:06:08
    Send and Continue
  90. Урок 90. 00:02:59
    Overall Good (or Bad)
  91. Урок 91. 00:05:11
    Web & Mobile
  92. Урок 92. 00:13:43
    Cart & Wishlist
  93. Урок 93. 00:09:30
    Most Recent Data Feed
  94. Урок 94. 00:02:05
    Stream & State
  95. Урок 95. 00:02:13
    Kafka Stream Stateful Operations
  96. Урок 96. 00:08:02
    Timestamp
  97. Урок 97. 00:15:30
    Average Rating
  98. Урок 98. 00:11:15
    Detailed Rating
  99. Урок 99. 00:07:40
    Summing Records
  100. Урок 100. 00:01:31
    Subtracting Value
  101. Урок 101. 00:01:06
    Using Reduce
  102. Урок 102. 00:06:31
    Timestamp Extractor
  103. Урок 103. 00:02:36
    Windowing
  104. Урок 104. 00:05:08
    Tumbling Time Window
  105. Урок 105. 00:01:58
    Hopping Time Window
  106. Урок 106. 00:04:02
    Join - Theory
  107. Урок 107. 00:05:52
    Join - Stream / Stream
  108. Урок 108. 00:12:08
    Inner Join - Stream / Stream
  109. Урок 109. 00:01:27
    Left Join - Stream / Stream
  110. Урок 110. 00:01:20
    Outer Join - Stream / Stream
  111. Урок 111. 00:13:00
    Inner Join - Table / Table
  112. Урок 112. 00:01:57
    Left Join - Table / Table
  113. Урок 113. 00:01:19
    Outer Join - Table / Table
  114. Урок 114. 00:01:42
    Stream to Table
  115. Урок 115. 00:11:25
    Inner Join - Stream / Table
  116. Урок 116. 00:02:51
    Left Join - Stream / Table
  117. Урок 117. 00:08:30
    Stream / Global Table Join - Part 1
  118. Урок 118. 00:07:12
    Stream / Table Co-Partition
  119. Урок 119. 00:01:41
    Stream / Global Table Join - Part 2
  120. Урок 120. 00:04:12
    Exactly Once Semantic
  121. Урок 121. 00:01:43
    Enabling Exactly Once
  122. Урок 122. 00:04:49
    Message In, Message Out
  123. Урок 123. 00:08:46
    Introducing Kafka Connect
  124. Урок 124. 00:03:31
    Kafka Connect on Docker
  125. Урок 125. 00:02:28
    Sample Use Cases
  126. Урок 126. 00:09:27
    File Source
  127. Урок 127. 00:06:30
    Database Sink
  128. Урок 128. 00:04:13
    SFTP Sink
  129. Урок 129. 00:04:40
    Change Data Capture
  130. Урок 130. 00:13:48
    CDC PostgreSQL Connector
  131. Урок 131. 00:03:14
    PostgreSQL Sink Connector
  132. Урок 132. 00:15:35
    Marketing Consumer
  133. Урок 133. 00:02:33
    It’s not A One-Stop-Solution
  134. Урок 134. 00:03:43
    Database Source
  135. Урок 135. 00:02:51
    HTTP Source
  136. Урок 136. 00:07:35
    Custom Source
  137. Урок 137. 00:03:29
    Elasticsearch Sink
  138. Урок 138. 00:02:29
    Data Format Differences
  139. Урок 139. 00:05:31
    Code Overview
  140. Урок 140. 00:26:20
    Code Hands on
  141. Урок 141. 00:02:06
    Tip : Override Converter
  142. Урок 142. 00:03:29
    Elasticsearch Sink
  143. Урок 143. 00:01:13
    Kafka User Interface
  144. Урок 144. 00:10:46
    Sneak Peek on Conduktor
  145. Урок 145. 00:01:28
    What We Will Learn
  146. Урок 146. 00:01:00
    Setup More Kafka Stack
  147. Урок 147. 00:04:00
    JSON Drawback
  148. Урок 148. 00:02:27
    Tip : Binary Data
  149. Урок 149. 00:02:30
    Tip : Large Message
  150. Урок 150. 00:03:04
    The Need for Schema
  151. Урок 151. 00:02:59
    Schema Registry
  152. Урок 152. 00:06:46
    What Is Avro
  153. Урок 153. 00:09:17
    Avro Theory
  154. Урок 154. 00:08:53
    Hello Avro
  155. Урок 155. 00:05:05
    Generic Avro
  156. Урок 156. 00:15:10
    Specific Avro
  157. Урок 157. 00:08:21
    Avro From Existing
  158. Урок 158. 00:03:19
    Nested Record
  159. Урок 159. 00:04:16
    From JSON to Avro
  160. Урок 160. 00:02:14
    Avro Tool
  161. Урок 161. 00:09:34
    What is Schema Evolution
  162. Урок 162. 00:06:05
    Schema Evolution - Hands On
  163. Урок 163. 00:03:04
    What is Schema Registry
  164. Урок 164. 00:00:59
    Schema Registry - User Interface
  165. Урок 165. 00:02:04
    Schema Registry - Hands On
  166. Урок 166. 00:04:04
    Getting Started
  167. Урок 167. 00:05:10
    Avro Producer 1
  168. Урок 168. 00:02:09
    Avro Consumer 1
  169. Урок 169. 00:04:31
    Avro Producer & Consumer 2
  170. Урок 170. 00:13:22
    Kafka Stream
  171. Урок 171. 00:06:38
    Backward Compatible Hands On
  172. Урок 172. 00:05:27
    Forward Compatible Hands On
  173. Урок 173. 00:01:57
    Full Compatible & Tips
  174. Урок 174. 00:01:41
    Quick Look on Schema Reqistry API
  175. Урок 175. 00:02:24
    Overview
  176. Урок 176. 00:04:19
    Source Connector & Consumer
  177. Урок 177. 00:03:17
    Producer
  178. Урок 178. 00:01:06
    Sink Connector
  179. Урок 179. 00:03:19
    What Is Kafka REST Proxy
  180. Урок 180. 00:01:41
    Cluster & Broker
  181. Урок 181. 00:00:50
    Topic
  182. Урок 182. 00:01:38
    Produce Binary
  183. Урок 183. 00:02:15
    Consume Binary
  184. Урок 184. 00:01:05
    Produce & Consume JSON
  185. Урок 185. 00:01:08
    Produce & Consume Avro
  186. Урок 186. 00:07:15
    Introduction to ksqlDB
  187. Урок 187. 00:01:14
    Interact With ksqlDB
  188. Урок 188. 00:00:46
    ksqlDB Syntax Reference
  189. Урок 189. 00:03:00
    Use Cases
  190. Урок 190. 00:08:25
    Hello ksqlDB
  191. Урок 191. 00:01:47
    Basic ksqlDB Stream
  192. Урок 192. 00:24:29
    Data Types
  193. Урок 193. 00:08:34
    Stream & Table Key
  194. Урок 194. 00:03:51
    First Step
  195. Урок 195. 00:00:55
    Row Key Alternative
  196. Урок 196. 00:03:11
    Additional Requirements
  197. Урок 197. 00:01:23
    Reward Each Location
  198. Урок 198. 00:01:40
    Run Script File
  199. Урок 199. 00:01:22
    Calling API or Other Process
  200. Урок 200. 00:01:00
    Further Fraud Processing
  201. Урок 201. 00:00:45
    KsqlDB REST API
  202. Урок 202. 00:04:00
    Are We Good Enough?
  203. Урок 203. 00:00:36
    Who Owns This Feedback?
  204. Урок 204. 00:00:36
    Good Feedback or Bad Feedback?
  205. Урок 205. 00:02:36
    Group Using Table
  206. Урок 206. 00:00:21
    Send and Continue
  207. Урок 207. 00:01:29
    Overall Good (or Bad)
  208. Урок 208. 00:04:58
    Insert Data Using KsqlDB
  209. Урок 209. 00:02:31
    Web & Mobile
  210. Урок 210. 00:06:12
    Cart & Wishlist
  211. Урок 211. 00:01:54
    Pull Query
  212. Урок 212. 00:01:59
    Most Recent Data Feed
  213. Урок 213. 00:01:40
    Timestamp
  214. Урок 214. 00:00:49
    Average Rating
  215. Урок 215. 00:00:47
    Detailed Rating
  216. Урок 216. 00:01:14
    Summing Records / Subtracting Value
  217. Урок 217. 00:01:52
    Timestamp Extractor
  218. Урок 218. 00:01:49
    Tumbling Time Window
  219. Урок 219. 00:01:22
    Hopping Time Window
  220. Урок 220. 00:01:37
    Inner Join Stream / Stream
  221. Урок 221. 00:01:23
    Left Join Stream / Stream
  222. Урок 222. 00:01:42
    Outer Join Stream / Stream
  223. Урок 223. 00:02:01
    Inner Join Table / Table
  224. Урок 224. 00:01:17
    Left Join Table / Table
  225. Урок 225. 00:01:15
    Outer Join Table / Table
  226. Урок 226. 00:01:23
    Inner Join Stream / Table
  227. Урок 227. 00:01:02
    Left Join Stream / Table
  228. Урок 228. 00:02:29
    Stream / Table Co-Partition
  229. Урок 229. 00:00:26
    Enabling Exactly Once
  230. Урок 230. 00:11:23
    User Defined Function (UDF)
  231. Урок 231. 00:09:10
    User Defined Tabular Function (UDTF)
  232. Урок 232. 00:09:17
    User Defined Aggregation Function (UDAF)
  233. Урок 233. 00:00:55
    ksqlDB & Schema Registry
  234. Урок 234. 00:01:36
    Avro on ksqlDB
  235. Урок 235. 00:01:33
    Writing Avro Schema
  236. Урок 236. 00:01:44
    Avro-Json Conversion
  237. Урок 237. 00:01:40
    KsqlDB & Kafka Connect
  238. Урок 238. 00:21:02
    KsqlDB Java Client
  239. Урок 239. 00:03:51
    Course Wrap Up