Урок 1.
00:02:19
Python for Data Science Automation: Let's Do This!
Урок 2.
00:00:46
The Game Plan: Data Analysis Foundations
Урок 3.
00:00:44
The Business Case: Building an Automated Forecast System
Урок 4.
00:00:45
Course Project Zip [File Download]
Урок 5.
00:02:27
Course Workflow: Tying Specific Actions to the Business Process
Урок 6.
00:04:03
Ultimate Python Cheat Sheet: Python Ecosystem in 2 Pages
Урок 7.
00:03:35
The Transactional Database Model [PDF Download]
Урок 8.
00:02:38
Anaconda Installation
Урок 9.
00:02:19
IDE (Integrated Development Environment) Options
Урок 10.
00:01:38
VSCode Installation
Урок 11.
00:01:13
Connect VSCode to Your Course Project Files
Урок 12.
00:04:41
Conda Env Create: Make the Python Course Environment
Урок 13.
00:00:41
Python Select Interpreter: Connect VSCode to Your Python Environment
Урок 14.
00:01:44
Conda Env Update: Add Python Packages to Your Environment
Урок 15.
00:01:12
Conda Env Export: Review & Share Your Environment
Урок 16.
00:01:22
Conda Env List & Remove: List Available Environments & Remove Unnecessary Envs
Урок 17.
00:01:15
Getting to Know VSCode
Урок 18.
00:02:07
VSCode Theme Customization
Урок 19.
00:00:44
VSCode Icon Themes
Урок 20.
00:04:16
VSCode User & Workspace Settings
Урок 21.
00:01:17
VSCode Keyboard Shortcuts
Урок 22.
00:03:23
VSCode Python Extensions
Урок 23.
00:02:05
VSCode Jupyter Extension - Jupyter Notebook Support
Урок 24.
00:03:35
VSCode Jupyter Extension - Interactive Python
Урок 25.
00:02:31
[Optional VSCode Setting] Jupyter: Send Selection to Interactive Window
Урок 26.
00:01:01
VSCode Excel Viewer
Урок 27.
00:02:43
VSCode Markdown & PDF Extensions
Урок 28.
00:01:09
VSCode Path Intellisense
Урок 29.
00:00:41
VSCode SQLite Extension
Урок 30.
00:01:27
[Optional] VSCode Extensions for R Users
Урок 31.
00:03:53
Python Environment Checkpoint [File Download]
Урок 32.
00:04:08
Getting Started [File Download]
Урок 33.
00:01:26
Using the Cheat Sheet
Урок 34.
00:03:34
Import: pandas, numpy, matplotlib.pyplot
Урок 35.
00:04:42
Importing From: plotnine, miziani
Урок 36.
00:02:10
Importing Functions and Submodules: os, rich
Урок 37.
00:02:45
Setting Up Python Interactive
Урок 38.
00:02:31
[Reminder | Optional VSCode Setting] Jupyter: Send Selection to Interactive Window
Урок 39.
00:02:47
Getting Help Documentation
Урок 40.
00:06:35
IMPORTANT VSCODE SETTING: File Paths | jupyter.notebookFileRoot
Урок 41.
00:06:46
Reading the Excel Files
Урок 42.
00:05:10
Reviewing the Data Model
Урок 43.
00:03:55
Exploratory 1: Top 5 Most Frequent Descriptions
Урок 44.
00:06:23
Exploratory 2: Plotting the Top 5 Bike Descriptions
Урок 45.
00:03:05
Preparing Orderlines for Merge: Drop Column
Урок 46.
00:03:34
Merging the Bikes DataFrame
Урок 47.
00:03:27
Merging the Bikeshops Data Frame
Урок 48.
00:04:52
Datetime: Converting Order Date | Copy vs No Copy
Урок 49.
00:07:27
Splitting the Description: Category 1, Category 2, and Frame Material
Урок 50.
00:03:05
Splitting Location: City, State
Урок 51.
00:02:55
Create the Total Price Column
Урок 52.
00:04:44
Reorganizing the Columns
Урок 53.
00:04:07
Renaming Columns
Урок 54.
00:01:12
Reviewing the Data Transformations
Урок 55.
00:03:50
Save Your Work: Pickle it.
Урок 56.
00:02:44
Pandas Datetime Accessors
Урок 57.
00:07:26
Resampling: Working with Pandas Offsets
Урок 58.
00:01:41
Quick Plot: Plotting Single Time Series w/ Pandas Matplotlib Backend
Урок 59.
00:05:53
Plotnine Visualization: Sales By Month, Part 1 - Geometries
Урок 60.
00:05:51
Plotnine Visualization: Sales by Month, Part 2 - Scales & Themes
Урок 61.
00:09:23
Resampling Groups: Combine groupby() and resample()
Урок 62.
00:07:24
Quick Plot: Plotting Multiple Time Series w/ Pandas Matplotlib Backend
Урок 63.
00:08:58
Plotnine Visualization, Part 1: Facetted Sales By Date & Category2 (Group)
Урок 64.
00:08:53
Plotnine Visualization, Part 2: Adding Themes & Scales
Урок 65.
00:04:42
Writing Files: Pickle, CSV, Excel
Урок 66.
00:02:35
Congrats. That was a fun whirlwind. Let's recap.
Урок 67.
00:01:22
Getting Started [File Download]
Урок 68.
00:03:41
Pickle Files
Урок 69.
00:04:00
CSV Files
Урок 70.
00:03:26
Excel Files
Урок 71.
00:01:47
SQL Databases
Урок 72.
00:03:02
Pandas I/O & SQL Alchemy Overviews
Урок 73.
00:01:24
Make Database Directory
Урок 74.
00:04:20
Create the SQLite Database
Урок 75.
00:03:04
Read the Excel Files
Урок 76.
00:07:12
Create the Database Tables
Урок 77.
00:00:54
Close the Connection
Урок 78.
00:02:08
Connect to the Database
Урок 79.
00:02:36
Getting the Database Table Names
Урок 80.
00:01:48
Reading from the Tables with f-strings
Урок 81.
00:03:05
[Bonus] VSCode SQLite Extension
Урок 82.
00:06:40
Making collect_data(), Part 1: Function Setup
Урок 83.
00:08:39
Making collect_data(), Part 2: Read Tables from the Database
Урок 84.
00:01:15
Making collect_data(), Part 3: Test the Database Import
Урок 85.
00:08:26
Making collect_data(), Part 4: Joining the Data
Урок 86.
00:07:15
Making collect_data(), Part 5: Cleaning the Data 1
Урок 87.
00:06:49
Making collect_data(), Part 6: Cleaning the Data 2
Урок 88.
00:03:59
Making collect_data(), Part 7: VSCode Docstring Generator
Урок 89.
00:04:42
Making a Package (my_pandas_extensions): Adding the database module
Урок 90.
00:01:07
🥳Congrats! You're learning really powerful concepts.
Урок 91.
00:02:25
Getting Started [File Download]
Урок 92.
00:01:13
[VSCode Setting] Jupyter: Send Selection to Interactive Window
Урок 93.
00:01:29
Package & Function Imports
Урок 94.
00:01:29
My Pandas Extensions: Fix FutureWarning Message (regex)
Урок 95.
00:05:30
How Python Works: Objects
Урок 96.
00:02:52
Pandas DataFrame & Series
Урок 97.
00:04:09
Numpy Arrays
Урок 98.
00:05:54
Python Builtin Data Structures: Dictionary, List, Tuple
Урок 99.
00:03:42
Python Builtin Data Types: Int, Float, Str, Bool,
Урок 100.
00:04:10
Casting Basics: Numeric & String Conversions
Урок 101.
00:02:41
Casting Sequences: To List, Numpy Array, Pandas Series, & DataFrame
Урок 102.
00:01:44
Pandas Series Dtype Conversion
Урок 103.
00:02:09
Pandas Data Wrangling Setup
Урок 104.
00:02:17
Subsetting Columns by Name
Урок 105.
00:01:36
Subsetting by Column Index (Position): iloc[]
Урок 106.
00:03:38
Subsetting Columns with Regex (Regular Expressions)
Урок 107.
00:02:17
Rearranging a Single Column (Column Subsetting)
Урок 108.
00:01:44
Rearranging Multiple Columns (Repetitive Way First)
Урок 109.
00:02:51
Rearranging Multiple Columns (List Comprehension)
Урок 110.
00:06:33
Data Frame Rearrange: Select Dtypes, Concat, & Drop
Урок 111.
00:03:07
Sort Values
Урок 112.
00:03:55
Simple Filters with Boolean Series
Урок 113.
00:03:48
Query Filters
Урок 114.
00:03:42
Filtering with isin() and
Урок 115.
00:02:42
Index slicing with df.iloc[]
Урок 116.
00:01:44
Getting Distinct Values: Drop duplicates
Урок 117.
00:02:15
N-Largest and N-Smallest
Урок 118.
00:01:53
Random Samples
Урок 119.
00:02:26
DataFrame Column Assignment: Calculated Columns
Урок 120.
00:03:11
Assign Basics: Lambda Functions
Урок 121.
00:03:32
Assign Cookbook: Making a Log Transformation
Урок 122.
00:05:27
Assign Cookbook: Searching Text (Boolean Flags)
Урок 123.
00:03:46
Assign Cookbook: Even-Width Binning with pd.cut()
Урок 124.
00:03:01
Visualizing Binning Strategies with a Pandas Heat Table
Урок 125.
00:02:36
Assign Cookbook: Quantile Binning with pd.qcut()
Урок 126.
00:05:49
Aggregation Basics (Summarizations)
Урок 127.
00:04:11
Common Summary Functions
Урок 128.
00:05:27
Groupby + Aggregate Basics (Summarizations)
Урок 129.
00:03:14
Groupby + Agg Cookbook (Summary DF 1): Sum & Median Total Price By Category 1 & 2
Урок 130.
00:03:24
Groupby + Agg Cookbook (Summary DF 2): Sum Total Price & Quantity By Category 1 & 2
Урок 131.
00:02:01
Groupby + Agg Details: Examining the Multilevel Column Index
Урок 132.
00:04:12
Groupby + Agg Cookbook (Summary DF 3): Grouping Time Series with Groupby & Resample
Урок 133.
00:03:42
Groupby + Apply Basics (Transformations)
Урок 134.
00:02:35
Groupby + Apply Cookbook: Transform All Columns by Group
Урок 135.
00:03:25
Groupby + Apply Cookbook: Filtering Slices by Group
Урок 136.
00:04:28
Renaming Basics: Renaming All Columns with Lambda
Урок 137.
00:01:21
Renaming Basics: Targeting Specific Columns
Урок 138.
00:05:57
Advanced Renaming: Renaming Multi-Index Columns
Урок 139.
00:05:00
Set Up Summarized Data: Revenue by Category 1
Урок 140.
00:06:42
Pivot: To Wide Format
Урок 141.
00:06:09
Export a Stylized Pandas Table to Excel (Wide Data)
Урок 142.
00:03:31
Melt: To Long Format
Урок 143.
00:04:34
Plotnine - Making a Faceted Horizontal Bar Chart (Tidy Long Data)
Урок 144.
00:06:09
Intro to Categorical Data: Sorting the Plotnine Plot
Урок 145.
00:07:42
Pivot Table (An awesome function for BI Tables)
Урок 146.
00:04:10
Unstack: A programmatic version of pivot()
Урок 147.
00:02:25
Stack: A programmatic version of melt()
Урок 148.
00:04:12
Merge: Data Frame Joins
Урок 149.
00:04:27
Concat: Binding DataFrames Rowwise & Columnwise
Урок 150.
00:03:08
Splitting Text Columns
Урок 151.
00:01:07
Combining Text Columns
Урок 152.
00:03:02
Set Up Summarized Data: Sales by Category 2 Daily
Урок 153.
00:02:22
Apply: Lambda Aggregations vs Transformations
Урок 154.
00:01:53
Apply: Broadcasting Aggregations
Урок 155.
00:02:24
Grouped Apply: Broadcasting
Урок 156.
00:02:03
Grouped Transform: Alternative to Grouped Apply (Fixes Index Issue)
Урок 157.
00:06:08
Making a "Data Frame" Function: add_columns()
Урок 158.
00:03:12
Pipe: Method chaining our custom function using the pipe
Урок 159.
00:01:17
Challenge #1: Data Wrangling with Pandas [File Download]
Урок 160.
00:02:25
Method 1: Jupyter VSCode Integration
Урок 161.
00:02:07
Method 2: Jupyter Notebooks (Legacy Method)
Урок 162.
00:03:16
Method 3: JupyterLab (Next Generation of Jupyter)
Урок 163.
00:03:08
Challenge Objectives
Урок 164.
00:05:10
Getting Started: Syncing Your JupyterLab Current Working Directory (%cd and %pwd)
Урок 165.
00:03:18
Challenge Tasks
Урок 166.
00:08:40
Challenge Solution
Урок 167.
00:01:37
Congrats! You've finished your first challenge.
Урок 168.
00:01:40
Automating Time Series Forecasting
Урок 169.
00:01:49
Getting Started [File Download]
Урок 170.
00:01:41
VSCode Extension: Browser Preview
Урок 171.
00:01:40
Package Imports
Урок 172.
00:01:10
The ProfileReport() Class
Урок 173.
00:03:19
Section 1: Profile Overview
Урок 174.
00:06:03
Section 2A: Numeric & Date Variables
Урок 175.
00:05:02
Section 2B: Categorical (Text) Variables
Урок 176.
00:02:52
Sections 3-6: Interactions, Correlations, Missing Values, & Sample
Урок 177.
00:03:09
Pandas Extension: df.profile_report()
Урок 178.
00:01:36
Exporting the Profile Report as HTML
Урок 179.
00:00:50
Getting Started
Урок 180.
00:02:59
TimeStamp & Period Conversions
Урок 181.
00:01:56
Pandas Datetime Accessors
Урок 182.
00:02:39
Date Math: Offsetting Time with TimeDelta's
Урок 183.
00:03:28
Date Math: Getting Duration between Two TimeStamps
Урок 184.
00:03:09
Creating Date Sequences: pd.date_range()
Урок 185.
00:07:58
Periods (In-Depth)
Урок 186.
00:06:24
Resampling (In-Depth): bike_sales_m_df
Урок 187.
00:06:38
Grouped Resampling (In-Depth): bike_sales_cat2_m_wide_df
Урок 188.
00:01:31
Reorganizing: Adding Comments
Урок 189.
00:05:39
Differencing with Lags (Single Time Series)
Урок 190.
00:02:05
Differencing with Lags (Multiple Time Series)
Урок 191.
00:01:43
Difference from First (Single Time Series)
Урок 192.
00:00:58
Difference From First (Multiple Time Series)
Урок 193.
00:03:21
Cumulative Expanding Windows (Single Time Series)
Урок 194.
00:01:39
Cumulative Expanding Windows (Multiple Time Series)
Урок 195.
00:08:15
Moving Average (Single Time Series)
Урок 196.
00:04:37
Moving Average (Multiple Time Series)
Урок 197.
00:01:17
Next Steps (Where we are headed)
Урок 198.
00:01:37
Getting Started [File Download]
Урок 199.
00:00:46
Setup: Python Imports & Data
Урок 200.
00:03:53
Function Anatomy: pd.Series.max()
Урок 201.
00:01:03
Errors (Exceptions)
Урок 202.
00:01:17
Function Names
Урок 203.
00:05:13
Function Anatomy: **kwargs
Урок 204.
00:02:19
Detect Outliers: Function Setup
Урок 205.
00:03:37
IQR Outlier Method, Part 1
Урок 206.
00:04:07
IQR Method, Part 2
Урок 207.
00:01:47
New Argument: IQR Multiplier
Урок 208.
00:02:36
New Argument: How? (Both, Upper, Lower)
Урок 209.
00:02:11
Checking for Pandas Series Input
Урок 210.
00:02:54
Checking IQR Multiplier for Int or Float Type
Урок 211.
00:01:10
Checking that IQR Multiplier is a Positive Value
Урок 212.
00:02:19
Checking that How is a Valid Option: both, lower, upper
Урок 213.
00:07:12
Informative Help Documentation: Adding a Docstring
Урок 214.
00:03:05
Testing Our Function: Detecting Outliers within Groups
Урок 215.
00:02:12
Extending the Pandas Series Class
Урок 216.
00:04:00
Summarize By Time: A handy function for time series wrangling
Урок 217.
00:04:56
Setting Up the "Summarize By Time" Function
Урок 218.
00:01:31
Handling the Date Column Input
Урок 219.
00:02:03
Handling Groups Input
Урок 220.
00:04:14
Handling the Time Series Resample
Урок 221.
00:03:16
Handling the Aggregation Function Input
Урок 222.
00:01:40
Handling the Value Column Input
Урок 223.
00:02:44
Forcing the Value Column Input to a List (to generate a data frame)
Урок 224.
00:02:26
Bug! Thinking through a solution
Урок 225.
00:03:52
Solution: Converting to a Function Dictionary with Zip + Dict
Урок 226.
00:02:02
Handling the Unstack
Урок 227.
00:02:51
Handling the Period Conversion
Урок 228.
00:02:25
Add Fill Missing Capability
Урок 229.
00:01:25
Review the Core Functionality
Урок 230.
00:01:50
Check Incoming Data: Raising a TypeError
Урок 231.
00:07:28
Adding the Docstring
Урок 232.
00:06:23
Pandas Flavor: Extending Pandas DataFrame Class
Урок 233.
00:03:03
Getting Started [File Download]
Урок 234.
00:04:36
Sktime Documentation
Урок 235.
00:01:35
How to Google Search like a Pro
Урок 236.
00:02:41
Set Up & Imports
Урок 237.
00:05:00
Summarizing to get Total Revenue by Month
Урок 238.
00:02:42
Summarizing to get Total Revenue by Category 2 & Month
Урок 239.
00:04:59
What is AutoARIMA?
Урок 240.
00:08:25
AutoARIMA Applied: Forecaster, Fit, Predict
Урок 241.
00:02:41
Adding Confidence Intervals (Prediction Intervals)
Урок 242.
00:02:39
Tuple Unpacking (Predictions, Confidence Intervals)
Урок 243.
00:05:28
Forecast Visualization
Урок 244.
00:00:24
Code Housekeeping
Урок 245.
00:03:10
Multiple Time Series Forecasting: AutoARIMA()
Урок 246.
00:02:20
For Loop: Iterate Across the DataFrame Columns
Урок 247.
00:05:23
For Loop: Modeling AutoARIMA()
Урок 248.
00:01:32
For-Loop: Getting the Confidence Intervals
Урок 249.
00:04:12
For-Loop: Combine with DataFrame | Actual Values, Predictions, & CIs
Урок 250.
00:03:36
For-Loop: Storing the Results (as a Dictionary)
Урок 251.
00:01:53
Housekeeping: Appending Variable Types to Variable Names
Урок 252.
00:02:43
Visual Forecast Assessment
Урок 253.
00:03:41
TQDM: Progress Bars
Урок 254.
00:03:45
Setting up the ARIMA Automation Function
Урок 255.
00:03:19
Making arima_forecast() | Function Definition
Урок 256.
00:04:41
Function Body | Setting Up the Iteration
Урок 257.
00:03:02
Training the AutoARIMA() Models
Урок 258.
00:01:12
Controlling Progress Bars: tqdm(min_interval)
Урок 259.
00:02:09
Making Predictions and Confidence Intervals
Урок 260.
00:02:24
Combine Results into a DataFrame
Урок 261.
00:01:50
Compose a Prediction Dictionary
Урок 262.
00:02:37
Return Results as a Single DataFrame | Rowwise Concatenation
Урок 263.
00:09:16
Setting the Column Names of the Output
Урок 264.
00:02:51
Drop remaining columns beginning with "level_"
Урок 265.
00:02:05
Testing the arima_forecast() function
Урок 266.
00:03:44
Creating the forecasting.py module
Урок 267.
00:01:32
Docstring: arima_forecast()
Урок 268.
00:06:35
Adding Checks: arima_forecast()
Урок 269.
00:02:29
Finally - Check Your Forecasts with Grouped Pandas Plotting
Урок 270.
00:01:10
Recap: You've just made an ARIMA Forecast Automation!
Урок 271.
00:02:07
Introduction to ETS Forecasting (Exponential Smoothing)
Урок 272.
00:06:07
Challenge 2 [File Download]
Урок 273.
00:05:18
Solution
Урок 274.
00:01:25
Part 3: Visualization & Reporting
Урок 275.
00:00:32
Getting Started [File Download]
Урок 276.
00:03:15
Plotnine Documentation
Урок 277.
00:02:57
Plotnine Anatomy: Imports
Урок 278.
00:02:54
Data Summarization: For Plotting Annual Bike Sales
Урок 279.
00:07:13
The Plot Canvas: Mapping Columns to Plot Components
Урок 280.
00:04:00
Plotnine Geometries
Урок 281.
00:03:00
Adding a Trend Line: geom_smooth()
Урок 282.
00:01:53
Formatting Plots
Урок 283.
00:01:42
Expand Limits
Урок 284.
00:03:52
Scales: Dollar Format for Y-Axis
Урок 285.
00:02:15
Scales: Date Format for X-Axis
Урок 286.
00:02:58
Labs and Themes
Урок 287.
00:01:18
Saving the ggplot
Урок 288.
00:02:24
Exploring the Plotnine Object
Урок 289.
00:02:20
Setting Up
Урок 290.
00:02:52
Scatter Plot: Data Manipulation
Урок 291.
00:03:18
Scatter Plot: Visualization
Урок 292.
00:02:08
Line Plot: Data Manipulation
Урок 293.
00:05:29
Line Plot: Visualization
Урок 294.
00:02:49
Data Manipulation, Part 1: No Categorical Ordering
Урок 295.
00:01:35
Visualization, Part 1: Without Categorical Ordering
Урок 296.
00:09:55
Aside: Introduction to Plotting using Categorical Data Type
Урок 297.
00:01:20
Finalizing the Horizontal Bar Chart
Урок 298.
00:02:48
Histogram: Data Manipulation
Урок 299.
00:02:15
Histogram: Visualization
Урок 300.
00:02:51
Histogram: Using Fill Aesthetic to Explore Differences by a Category
Урок 301.
00:02:48
Histogram: Using Facet Grids to Compare Distributions by Category
Урок 302.
00:02:55
Density Plots: Kernel Density Estimation (KDE) using geom_density()
Урок 303.
00:02:20
Box Plot: Data Manipulation
Урок 304.
00:07:24
Box Plot: Visualization
Урок 305.
00:03:32
Violin Plot with Jitter: geom_violin() and geom_jitter()
Урок 306.
00:06:09
Data Manipulation: Add a Total Price Text Column with USD Dollar Format
Урок 307.
00:03:11
Creating the Bar Plot: geom_col() and geom_smooth()
Урок 308.
00:05:35
Adding Text to a Bar Plot: geom_text()
Урок 309.
00:05:58
Highlighting an Outlier with a Label: geom_label()
Урок 310.
00:03:39
Finalizing the Plot with Scales and Themes
Урок 311.
00:04:41
Sales by Month and Category 2: Data Manipulation
Урок 312.
00:06:55
Facets: Adding subplots "facets" with facet_wrap()
Урок 313.
00:04:34
Scales: Applying scales to alter x, y, and color mappings
Урок 314.
00:03:54
Themes: Theme Customization with Pre-Built Themes | theme_matplotlib()
Урок 315.
00:05:33
Theme Elements: Customization with theme()
Урок 316.
00:04:44
Plot Title and X/Y-Axis Labels: labs()
Урок 317.
00:01:21
Getting Started
Урок 318.
00:02:10
Package Imports
Урок 319.
00:05:00
Our Forecasting Workflow Recap
Урок 320.
00:04:51
Data Preparation: Melting the Value and Prediction Columns
Урок 321.
00:03:04
Data Preparation: Fixing the FutureWarning
Урок 322.
00:03:35
Visualization: Setting up the canvas with ggplot()
Урок 323.
00:05:43
Visualization: Adding geoms and facets
Урок 324.
00:05:12
Visualization: Scales and Theme Minimal
Урок 325.
00:04:22
Visualization: Customizing the Theme Elements
Урок 326.
00:03:23
Making the plot_forecast() Function Definition
Урок 327.
00:04:38
Data Wrangling: Implementing the Melt
Урок 328.
00:08:52
Handling the Time-Based Column: Converting to TimeStamp
Урок 329.
00:08:56
Visualization: Parameterizing the Plot
Урок 330.
00:07:10
Testing the Forecast Plot Function Parameters
Урок 331.
00:01:30
Testing the Automation Workflow
Урок 332.
00:06:15
Reordering the Subplots using Cat Tools
Урок 333.
00:03:37
Adding the plot_forecast() function to our forecasting module
Урок 334.
00:03:30
Docstring | Testing Our Imported plot_forecast() Function
Урок 335.
00:01:56
Getting Started [File Download]
Урок 336.
00:02:33
Package Imports
Урок 337.
00:01:37
Reviewing Our Files
Урок 338.
00:05:26
Generating the Forecasting Workflow
Урок 339.
00:01:39
Generating the Forecast Visualization
Урок 340.
00:01:27
Overview of the Database I/O Process
Урок 341.
00:05:44
Preparing the Forecast for Update
Урок 342.
00:06:11
Validating the Column Names
Урок 343.
00:01:15
Testing the Prep Forecast for Database Function
Урок 344.
00:05:28
Setting Up the Write Forecast to Database Function
Урок 345.
00:01:19
Modularizing the Data Preparation Step
Урок 346.
00:06:47
Specifying SQL Data Types
Урок 347.
00:06:50
Write to Database
Урок 348.
00:00:55
Close Connection
Урок 349.
00:04:29
Testing Our Function
Урок 350.
00:06:00
Creating our Read Forecast Function
Урок 351.
00:04:19
Adding Functions to Database Module
Урок 352.
00:03:07
Docstrings
Урок 353.
00:02:44
Automation Workflow with Database I/O
Урок 354.
00:04:43
Forecasting 1: Total Revenue
Урок 355.
00:04:30
Fix #1: Reorder Columns in Prep Data Function
Урок 356.
00:01:25
Plotting Total Revenue Forecast
Урок 357.
00:05:33
Forecasting 2: Revenue by Category 1
Урок 358.
00:04:37
Forecasting 3: Revenue by Category 2
Урок 359.
00:05:34
Forecasting 4: Forecast Quarterly Revenue by Customer
Урок 360.
00:01:33
Fix #2: Prep Data | Add timestamp conversion
Урок 361.
00:03:20
Rerun Our Workflow: Success!
Урок 362.
00:03:15
Writing to the Database
Урок 363.
00:01:46
Pro-Tip: Saving Intermediate Data
Урок 364.
00:07:00
Utility Function: Convert to Datetime
Урок 365.
00:03:46
Rerun the Forecast Workflow
Урок 366.
00:02:02
Read Forecast from Database
Урок 367.
00:03:42
Recap: Debugging is a Skill
Урок 368.
00:01:16
Jupyter Automated Reporting
Урок 369.
00:02:54
Getting Started [File Download]
Урок 370.
00:05:49
The Updated Database Script: Automatically Run Forecasts
Урок 371.
00:03:28
python update_database.py
Урок 372.
00:01:23
SQLite Explorer
Урок 373.
00:06:14
Setting Up the Working Directory
Урок 374.
00:06:12
Importing Data and Parameterizing a Header with Markdown
Урок 375.
00:03:56
Parameterizing a Paragraph with Markdown
Урок 376.
00:05:35
Performance Summary: Pivot Table, Part 1
Урок 377.
00:02:14
Performance Summary: Pivot Table, Part 2
Урок 378.
00:02:04
Plotting the Forecast: plot_forecast()
Урок 379.
00:01:16
Papermill Setup
Урок 380.
00:02:12
Package Imports
Урок 381.
00:03:19
Papermill Documentation
Урок 382.
00:02:11
Developing Parameters: Game Plan
Урок 383.
00:03:21
Making ID Sets, Part 1
Урок 384.
00:04:32
Making ID Sets, Part 2
Урок 385.
00:03:02
Part 1: Intro to Pathlib and OS
Урок 386.
00:04:42
Part 2: Detecting Directories Exist & Making New Directories
Урок 387.
00:02:57
Jupyter Template Setup
Урок 388.
00:03:49
Parameterizing the Jupyter Template
Урок 389.
00:03:47
Finishing the Juyter Template Parameterization
Урок 390.
00:04:06
The pm.exectute_notebook() function
Урок 391.
00:06:02
Setting Up Key Parameters
Урок 392.
00:06:09
Iterating without a For-Loop
Урок 393.
00:06:01
Iterating with a For-Loop
Урок 394.
00:01:08
Getting Started
Урок 395.
00:03:33
Setting Up the Report Parameters
Урок 396.
00:01:29
Creating a Resource Path
Урок 397.
00:06:32
String Transformation: Make File Names from Report Titles
Урок 398.
00:02:46
Setting Up run_reports()
Урок 399.
00:04:49
Make the Report Directory
Урок 400.
00:06:23
Setting Up the For-Loop Parameters
Урок 401.
00:04:02
Setting Up Jupyter Notebook Execution (Inside of For-Loop)
Урок 402.
00:06:04
Package Resources: Setting Up the Template Path
Урок 403.
00:04:35
Integrating the Run Reports Function into Our Package
Урок 404.
00:03:32
Getting Started [File Download]
Урок 405.
00:01:50
NB Convert Documentation & Installation Requirements
Урок 406.
00:01:06
Step 1: Pandoc Installation
Урок 407.
00:01:06
Step 2: Tex Installation (MikTex Windows Shown | Mac Use MacTex)
Урок 408.
00:01:34
HTML Report Conversion
Урок 409.
00:01:04
PDF Report Conversion
Урок 410.
00:04:22
Setup & Imports
Урок 411.
00:04:23
Making the Config()
Урок 412.
00:03:21
Locating Files with Glob
Урок 413.
00:06:39
Exporting an HTML Report Programmatically
Урок 414.
00:05:51
HTML Automation: Using a For-Loop to Convert All 4 Reports
Урок 415.
00:06:00
PDF Automation: Using a For-Loop to Convert All 4 Reports
Урок 416.
00:02:42
Getting Set Up
Урок 417.
00:02:47
Integrating glob: Pulling the Jupyter Notebook File Paths
Урок 418.
00:04:12
Integrate "Convert to HTML" Report Automation
Урок 419.
00:02:32
Test "Convert to HTML" Report Automation
Урок 420.
00:01:47
Integrate "Convert to PDF" Report Automation
Урок 421.
00:03:40
Test "Convert to PDF" Report Automation
Урок 422.
00:06:32
My Pandas Extensions: Upgrade reporting.py with HTML & PDF Reports, Part 1
Урок 423.
00:04:01
My Pandas Extensions: Upgrade reporting.py with HTML & PDF Reports, Part 2
Урок 424.
00:05:08
Run Forecast Reports Py: Part 1 - The main() function
Урок 425.
00:06:02
Run Forecast Reports Py: Part 2 - Adding Timestamps to Folders
Урок 426.
00:02:57
Run Forecast Reports Py: Part 3 - Running Reports
Урок 427.
00:03:14
Run Forecast Reports Py: Part 4 - Adjusting Folder Automation
Урок 428.
00:00:28
Scheduling Python Scripts Bonus!!!
Урок 429.
00:02:26
Making the Batch File (.bat) to run our Python Script
Урок 430.
00:02:14
Setting up Automated Tasks with Windows Task Scheduler
Урок 431.
00:00:40
Debugging Windows Task Scheduler Tasks with Pause
Урок 432.
00:01:53
Fixing the SQL Alchemy Connection
Урок 433.
00:00:24
Removing the Automation: Disable & Delete
Урок 434.
00:02:31
Python Script Setup | SQL Database Absolute Path
Урок 435.
00:03:23
The Mac Automator
Урок 436.
00:02:01
Scheduling the Automator App with Calendar
Урок 437.
00:01:11
Congratulations!!!
Урок 438.
01:33:11
Forecasting 100 Time Series in Python with Sktime
https://university.business-science.io/p/python-for-data-science-automation-ds4b-101p
Секция "4.2.2 Periods & Time-Based Groupings (Resampling)" , то там список видео такой
====
Periods (In-Depth) (7:57)
Resampling (In-Depth): ♻️ bike_sales_m_df (6:23)
Grouped Resampling (In-Depth): ♻️ bike_sales_cat2_m_wide_df (6:37)
...
===
У вас идет так:
===
Creating Date Sequences - pd.date_range() (здесь закончилась предыдущая секция)
Resampling (In-Depth) - bike_sales_m_df
Grouped Resampling (In-Depth) - bike_sales_cat2_m_wide_df
===
Видео "Periods (In-Depth) (7:57)" отсутствует.