-
Урок 1.
00:03:13
Introduction
-
Урок 2.
00:02:21
Course Structure + How to get the best of Udemy [PLEASE DO NOT SKIP]
-
Урок 3.
00:02:15
What is LangChain?
-
Урок 4.
00:01:52
Course's Discord Server
-
Урок 5.
00:06:11
Project Setup (Pycharm) recommend)
-
Урок 6.
00:08:29
Project Setup (vscode) - optional
-
Урок 7.
00:12:23
Your First LangChain application - Chaining a simple prompt
-
Урок 8.
00:00:39
Quick Check In
-
Урок 9.
00:01:03
Ice Breaker- What are we building here?
-
Урок 10.
00:12:55
Integrating Linkedin Data Processing - Part 1 - Scraping
-
Урок 11.
00:04:23
Linkedin Data Processing - Part 2 - Agents Theory
-
Урок 12.
00:05:24
Linkedin Data Processing- Part 3: Tools, AgentType & initialize_agent
-
Урок 13.
00:19:30
Linkedin Data Processing- Part 4: Custom Agent Implementation & Testing
-
Урок 14.
00:08:57
[Optional] Twitter Data Processing- Part 1- Scraping
-
Урок 15.
00:11:12
[Optional] Twitter Data Processing- Part 2- Agents (Optional)
-
Урок 16.
00:11:24
Output Parsers- Getting Ready to work with a Frontend
-
Урок 17.
00:06:35
FullsStack App- Building our LLM powered by LangChain FullStack Application
-
Урок 18.
00:01:52
What are we building? ReAct AgentExecutor from scratch
-
Урок 19.
00:05:36
Environment Setup + ReAct Algorithm overview
-
Урок 20.
00:10:48
Defining Tools for our ReAct agent
-
Урок 21.
00:14:59
ReAct prompt, LLM Reasoning Engine, Output Parsing and Tool Execution
-
Урок 22.
00:07:41
AgentAction, AgentFinish, ReAct Loop
-
Урок 23.
00:08:30
CallbackHandlers, ReAct Prompt and finalizing the ReAct Agent loop
-
Урок 24.
00:13:59
Theoretical Introduction to embeddings, Vectorstores & RetrievalQA chain (RAG)
-
Урок 25.
00:09:48
LangChain classes review: Pinecone, OpenAIEmbeddings, RetrievalQA, TextLoader
-
Урок 26.
00:04:07
Medium Analyzer- Boilerplate Project Setup
-
Урок 27.
00:12:56
Medium Analyzer- Implementation
-
Урок 28.
00:11:38
Chat With Your PDF- FAISS Local Vectorstore
-
Урок 29.
00:02:14
What are we building?
-
Урок 30.
00:18:11
Building an AI LangChain Chat Assistant- Vectorstore Pincone Ingestion
-
Урок 31.
00:13:17
Building an AI LangChain Chat Assistant- RetrievalQA chain (prompt augmentation)
-
Урок 32.
00:17:09
Building an AI LangChain Chat Assistant- "Frontend" with Streamlit (UI)
-
Урок 33.
00:11:43
Building an AI LangChain Chat Assistant- Memory & ConversationalRetrievalChain
-
Урок 34.
00:05:33
What are we building? (A slim Version of GPT Code-Interpreter)
-
Урок 35.
00:02:14
Project Setup
-
Урок 36.
00:08:27
Python Agent
-
Урок 37.
00:09:31
CSV Agent
-
Урок 38.
00:09:19
Wrapping Everything: Router Agent + OpenAI functions
-
Урок 39.
00:11:30
LangChain Token Limitation Handeling Strategies
-
Урок 40.
00:20:54
LangChain Memory Deepdive
-
Урок 41.
00:03:54
The GIST of LLMs
-
Урок 42.
00:02:56
What is a Prompt? Composition of a formal prompt
-
Урок 43.
00:02:43
Zero Shot Prompting
-
Урок 44.
00:08:27
Few Shot Prompting
-
Урок 45.
00:08:34
Chain of Thought Prompting
-
Урок 46.
00:07:19
ReAct
-
Урок 47.
00:09:00
Prompt Engineering Quick Tips
-
Урок 48.
00:02:11
Have a technical issue? WATCH THIS FIRST. I Promise this will help!
-
Урок 49.
00:05:50
Tweet API- tweepy.errors.Forbidden: 403 Forbidden
-
Урок 50.
00:08:34
LLM Applications in Production
-
Урок 51.
00:04:03
LLM Application Development landscape
-
Урок 52.
00:06:01
Finished course? Whats next!
-
Урок 53.
00:04:09
LangChain Hub - Downloads prompt from the community
-
Урок 54.
00:03:53
TextSplitting Playground