Урок 1.
00:01:36
AI Engineering Bootcamp: Learn AWS SageMaker with Patrik Szepesi
Урок 2.
00:08:43
Course Introduction
Урок 3.
00:04:32
Setting Up Our AWS Account
Урок 4.
00:07:40
Set Up IAM Roles + Best Practices
Урок 5.
00:07:02
AWS Security Best Practices
Урок 6.
00:02:23
Set Up AWS SageMaker Domain
Урок 7.
00:00:43
UI Domain Change
Урок 8.
00:05:09
Setting Up SageMaker Environment
Урок 9.
00:08:45
SageMaker Studio and Pricing
Урок 10.
00:06:09
Setup: SageMaker Server + PyTorch
Урок 11.
00:18:35
HuggingFace Models, Sentiment Analysis, and AutoScaling
Урок 12.
00:06:04
Get Dataset for Multiclass Text Classification
Урок 13.
00:03:53
Creating Our AWS S3 Bucket
Урок 14.
00:01:27
Uploading Our Training Data to S3
Урок 15.
00:13:22
Exploratory Data Analysis - Part 1
Урок 16.
00:06:08
Exploratory Data Analysis - Part 2
Урок 17.
00:11:09
Data Visualization and Best Practices
Урок 18.
00:18:25
Setting Up Our Training Job Notebook + Reasons to Use SageMaker
Урок 19.
00:13:37
Python Script for HuggingFace Estimator
Урок 20.
00:03:22
Creating Our Optional Experiment Notebook - Part 1
Урок 21.
00:04:02
Creating Our Optional Experiment Notebook - Part 2
Урок 22.
00:13:25
Encoding Categorical Labels to Numeric Values
Урок 23.
00:15:06
Understanding the Tokenization Vocabulary
Урок 24.
00:10:57
Encoding Tokens
Урок 25.
00:12:49
Practical Example of Tokenization and Encoding
Урок 26.
00:16:57
Creating Our Dataset Loader Class
Урок 27.
00:15:10
Setting Pytorch DataLoader
Урок 28.
00:01:32
Which Path Will You Take?
Урок 29.
00:04:47
DistilBert vs. Bert Differences
Урок 30.
00:07:41
Embeddings In A Continuous Vector Space
Урок 31.
00:05:14
Introduction To Positional Encodings
Урок 32.
00:04:15
Positional Encodings - Part 1
Урок 33.
00:10:11
Positional Encodings - Part 2 (Even and Odd Indices)
Урок 34.
00:05:09
Why Use Sine and Cosine Functions
Урок 35.
00:09:53
Understanding the Nature of Sine and Cosine Functions
Урок 36.
00:09:25
Visualizing Positional Encodings in Sine and Cosine Graphs
Урок 37.
00:18:08
Solving the Equations to Get the Values for Positional Encodings
Урок 38.
00:03:03
Introduction to Attention Mechanism
Урок 39.
00:18:11
Query, Key and Value Matrix
Урок 40.
00:06:54
Getting Started with Our Step by Step Attention Calculation
Урок 41.
00:20:06
Calculating Key Vectors
Урок 42.
00:10:21
Query Matrix Introduction
Урок 43.
00:21:25
Calculating Raw Attention Scores
Урок 44.
00:13:33
Understanding the Mathematics Behind Dot Products and Vector Alignment
Урок 45.
00:05:43
Visualizing Raw Attention Scores in 2D
Урок 46.
00:09:17
Converting Raw Attention Scores to Probability Distributions with Softmax
Урок 47.
00:03:20
Normalization
Урок 48.
00:09:08
Understanding the Value Matrix and Value Vector
Урок 49.
00:10:46
Calculating the Final Context Aware Rich Representation for the Word "River"
Урок 50.
00:01:59
Understanding the Output
Урок 51.
00:11:56
Understanding Multi Head Attention
Урок 52.
00:09:52
Multi Head Attention Example and Subsequent Layers
Урок 53.
00:02:30
Masked Language Learning
Урок 54.
00:02:57
Exercise: Imposter Syndrome
Урок 55.
00:17:15
Creating Our Custom Model Architecture with PyTorch
Урок 56.
00:15:32
Adding the Dropout, Linear Layer, and ReLU to Our Model
Урок 57.
00:13:05
Creating Our Accuracy Function
Урок 58.
00:19:09
Creating Our Train Function
Урок 59.
00:08:18
Finishing Our Train Function
Урок 60.
00:13:41
Setting Up the Validation Function
Урок 61.
00:04:06
Passing Parameters In SageMaker
Урок 62.
00:04:28
Setting Up Model Parameters For Training
Урок 63.
00:05:40
Understanding The Mathematics Behind Cross Entropy Loss
Урок 64.
00:06:57
Finishing Our Script.py File
Урок 65.
00:07:36
Quota Increase
Урок 66.
00:08:16
Starting Our Training Job
Урок 67.
00:14:17
Debugging Our Training Job With AWS CloudWatch
Урок 68.
00:05:47
Analyzing Our Training Job Results
Урок 69.
00:08:35
Creating Our Inference Script For Our PyTorch Model
Урок 70.
00:09:13
Finishing Our PyTorch Inference Script
Урок 71.
00:07:31
Setting Up Our Deployment
Урок 72.
00:08:55
Deploying Our Model To A SageMaker Endpoint
Урок 73.
00:04:20
Introduction to Endpoint Load Testing
Урок 74.
00:10:03
Creating Our Test Data for Load Testing
Урок 75.
00:01:04
Upload Testing Data to S3
Урок 76.
00:03:59
Creating Our Model for Load Testing
Урок 77.
00:07:15
Starting Our Load Test Job
Урок 78.
00:10:17
Analyze Load Test Results
Урок 79.
00:03:51
Deploying Our Endpoint
Урок 80.
00:10:27
Creating Lambda Function to Call Our Endpoint
Урок 81.
00:05:28
Setting Up Our AWS API Gateway
Урок 82.
00:05:40
Testing Our Model with Postman, API Gateway and Lambda
Урок 83.
00:02:52
Cleaning Up Resources
Урок 84.
00:01:18
Thank You!