Урок 1. 00:01:36
AI Engineering Bootcamp: Learn AWS SageMaker with Patrik Szepesi
Урок 2. 00:08:43
Course Introduction
Урок 3. 00:04:32
Setting Up Our AWS Account
Урок 4. 00:07:40
Set Up IAM Roles + Best Practices
Урок 5. 00:07:02
AWS Security Best Practices
Урок 6. 00:02:23
Set Up AWS SageMaker Domain
Урок 7. 00:00:43
UI Domain Change
Урок 8. 00:05:09
Setting Up SageMaker Environment
Урок 9. 00:08:45
SageMaker Studio and Pricing
Урок 10. 00:06:09
Setup: SageMaker Server + PyTorch
Урок 11. 00:18:35
HuggingFace Models, Sentiment Analysis, and AutoScaling
Урок 12. 00:06:04
Get Dataset for Multiclass Text Classification
Урок 13. 00:03:53
Creating Our AWS S3 Bucket
Урок 14. 00:01:27
Uploading Our Training Data to S3
Урок 15. 00:13:22
Exploratory Data Analysis - Part 1
Урок 16. 00:06:08
Exploratory Data Analysis - Part 2
Урок 17. 00:11:09
Data Visualization and Best Practices
Урок 18. 00:18:25
Setting Up Our Training Job Notebook + Reasons to Use SageMaker
Урок 19. 00:13:37
Python Script for HuggingFace Estimator
Урок 20. 00:03:22
Creating Our Optional Experiment Notebook - Part 1
Урок 21. 00:04:02
Creating Our Optional Experiment Notebook - Part 2
Урок 22. 00:13:25
Encoding Categorical Labels to Numeric Values
Урок 23. 00:15:06
Understanding the Tokenization Vocabulary
Урок 24. 00:10:57
Encoding Tokens
Урок 25. 00:12:49
Practical Example of Tokenization and Encoding
Урок 26. 00:16:57
Creating Our Dataset Loader Class
Урок 27. 00:15:10
Setting Pytorch DataLoader
Урок 28. 00:01:32
Which Path Will You Take?
Урок 29. 00:04:47
DistilBert vs. Bert Differences
Урок 30. 00:07:41
Embeddings In A Continuous Vector Space
Урок 31. 00:05:14
Introduction To Positional Encodings
Урок 32. 00:04:15
Positional Encodings - Part 1
Урок 33. 00:10:11
Positional Encodings - Part 2 (Even and Odd Indices)
Урок 34. 00:05:09
Why Use Sine and Cosine Functions
Урок 35. 00:09:53
Understanding the Nature of Sine and Cosine Functions
Урок 36. 00:09:25
Visualizing Positional Encodings in Sine and Cosine Graphs
Урок 37. 00:18:08
Solving the Equations to Get the Values for Positional Encodings
Урок 38. 00:03:03
Introduction to Attention Mechanism
Урок 39. 00:18:11
Query, Key and Value Matrix
Урок 40. 00:06:54
Getting Started with Our Step by Step Attention Calculation
Урок 41. 00:20:06
Calculating Key Vectors
Урок 42. 00:10:21
Query Matrix Introduction
Урок 43. 00:21:25
Calculating Raw Attention Scores
Урок 44. 00:13:33
Understanding the Mathematics Behind Dot Products and Vector Alignment
Урок 45. 00:05:43
Visualizing Raw Attention Scores in 2D
Урок 46. 00:09:17
Converting Raw Attention Scores to Probability Distributions with Softmax
Урок 47. 00:03:20
Normalization
Урок 48. 00:09:08
Understanding the Value Matrix and Value Vector
Урок 49. 00:10:46
Calculating the Final Context Aware Rich Representation for the Word "River"
Урок 50. 00:01:59
Understanding the Output
Урок 51. 00:11:56
Understanding Multi Head Attention
Урок 52. 00:09:52
Multi Head Attention Example and Subsequent Layers
Урок 53. 00:02:30
Masked Language Learning
Урок 54. 00:02:57
Exercise: Imposter Syndrome
Урок 55. 00:17:15
Creating Our Custom Model Architecture with PyTorch
Урок 56. 00:15:32
Adding the Dropout, Linear Layer, and ReLU to Our Model
Урок 57. 00:13:05
Creating Our Accuracy Function
Урок 58. 00:19:09
Creating Our Train Function
Урок 59. 00:08:18
Finishing Our Train Function
Урок 60. 00:13:41
Setting Up the Validation Function
Урок 61. 00:04:06
Passing Parameters In SageMaker
Урок 62. 00:04:28
Setting Up Model Parameters For Training
Урок 63. 00:05:40
Understanding The Mathematics Behind Cross Entropy Loss
Урок 64. 00:06:57
Finishing Our Script.py File
Урок 65. 00:07:36
Quota Increase
Урок 66. 00:08:16
Starting Our Training Job
Урок 67. 00:14:17
Debugging Our Training Job With AWS CloudWatch
Урок 68. 00:05:47
Analyzing Our Training Job Results
Урок 69. 00:08:35
Creating Our Inference Script For Our PyTorch Model
Урок 70. 00:09:13
Finishing Our PyTorch Inference Script
Урок 71. 00:07:31
Setting Up Our Deployment
Урок 72. 00:08:55
Deploying Our Model To A SageMaker Endpoint
Урок 73. 00:04:20
Introduction to Endpoint Load Testing
Урок 74. 00:10:03
Creating Our Test Data for Load Testing
Урок 75. 00:01:04
Upload Testing Data to S3
Урок 76. 00:03:59
Creating Our Model for Load Testing
Урок 77. 00:07:15
Starting Our Load Test Job
Урок 78. 00:10:17
Analyze Load Test Results
Урок 79. 00:03:51
Deploying Our Endpoint
Урок 80. 00:10:27
Creating Lambda Function to Call Our Endpoint
Урок 81. 00:05:28
Setting Up Our AWS API Gateway
Урок 82. 00:05:40
Testing Our Model with Postman, API Gateway and Lambda
Урок 83. 00:02:52
Cleaning Up Resources
Урок 84. 00:01:18
Thank You!