Этот материал находится в платной подписке. Оформи премиум подписку и смотри или слушай
AI Engineering Bootcamp: Build, Train & Deploy Models with AWS SageMaker,
а также все другие курсы, прямо сейчас!
Премиум
-
Урок 1. 00:01:36AI Engineering Bootcamp: Learn AWS SageMaker with Patrik Szepesi
-
Урок 2. 00:08:43Course Introduction
-
Урок 3. 00:04:32Setting Up Our AWS Account
-
Урок 4. 00:07:40Set Up IAM Roles + Best Practices
-
Урок 5. 00:07:02AWS Security Best Practices
-
Урок 6. 00:02:23Set Up AWS SageMaker Domain
-
Урок 7. 00:00:43UI Domain Change
-
Урок 8. 00:05:09Setting Up SageMaker Environment
-
Урок 9. 00:08:45SageMaker Studio and Pricing
-
Урок 10. 00:06:09Setup: SageMaker Server + PyTorch
-
Урок 11. 00:18:35HuggingFace Models, Sentiment Analysis, and AutoScaling
-
Урок 12. 00:06:04Get Dataset for Multiclass Text Classification
-
Урок 13. 00:03:53Creating Our AWS S3 Bucket
-
Урок 14. 00:01:27Uploading Our Training Data to S3
-
Урок 15. 00:13:22Exploratory Data Analysis - Part 1
-
Урок 16. 00:06:08Exploratory Data Analysis - Part 2
-
Урок 17. 00:11:09Data Visualization and Best Practices
-
Урок 18. 00:18:25Setting Up Our Training Job Notebook + Reasons to Use SageMaker
-
Урок 19. 00:13:37Python Script for HuggingFace Estimator
-
Урок 20. 00:03:22Creating Our Optional Experiment Notebook - Part 1
-
Урок 21. 00:04:02Creating Our Optional Experiment Notebook - Part 2
-
Урок 22. 00:13:25Encoding Categorical Labels to Numeric Values
-
Урок 23. 00:15:06Understanding the Tokenization Vocabulary
-
Урок 24. 00:10:57Encoding Tokens
-
Урок 25. 00:12:49Practical Example of Tokenization and Encoding
-
Урок 26. 00:16:57Creating Our Dataset Loader Class
-
Урок 27. 00:15:10Setting Pytorch DataLoader
-
Урок 28. 00:01:32Which Path Will You Take?
-
Урок 29. 00:04:47DistilBert vs. Bert Differences
-
Урок 30. 00:07:41Embeddings In A Continuous Vector Space
-
Урок 31. 00:05:14Introduction To Positional Encodings
-
Урок 32. 00:04:15Positional Encodings - Part 1
-
Урок 33. 00:10:11Positional Encodings - Part 2 (Even and Odd Indices)
-
Урок 34. 00:05:09Why Use Sine and Cosine Functions
-
Урок 35. 00:09:53Understanding the Nature of Sine and Cosine Functions
-
Урок 36. 00:09:25Visualizing Positional Encodings in Sine and Cosine Graphs
-
Урок 37. 00:18:08Solving the Equations to Get the Values for Positional Encodings
-
Урок 38. 00:03:03Introduction to Attention Mechanism
-
Урок 39. 00:18:11Query, Key and Value Matrix
-
Урок 40. 00:06:54Getting Started with Our Step by Step Attention Calculation
-
Урок 41. 00:20:06Calculating Key Vectors
-
Урок 42. 00:10:21Query Matrix Introduction
-
Урок 43. 00:21:25Calculating Raw Attention Scores
-
Урок 44. 00:13:33Understanding the Mathematics Behind Dot Products and Vector Alignment
-
Урок 45. 00:05:43Visualizing Raw Attention Scores in 2D
-
Урок 46. 00:09:17Converting Raw Attention Scores to Probability Distributions with Softmax
-
Урок 47. 00:03:20Normalization
-
Урок 48. 00:09:08Understanding the Value Matrix and Value Vector
-
Урок 49. 00:10:46Calculating the Final Context Aware Rich Representation for the Word "River"
-
Урок 50. 00:01:59Understanding the Output
-
Урок 51. 00:11:56Understanding Multi Head Attention
-
Урок 52. 00:09:52Multi Head Attention Example and Subsequent Layers
-
Урок 53. 00:02:30Masked Language Learning
-
Урок 54. 00:02:57Exercise: Imposter Syndrome
-
Урок 55. 00:17:15Creating Our Custom Model Architecture with PyTorch
-
Урок 56. 00:15:32Adding the Dropout, Linear Layer, and ReLU to Our Model
-
Урок 57. 00:13:05Creating Our Accuracy Function
-
Урок 58. 00:19:09Creating Our Train Function
-
Урок 59. 00:08:18Finishing Our Train Function
-
Урок 60. 00:13:41Setting Up the Validation Function
-
Урок 61. 00:04:06Passing Parameters In SageMaker
-
Урок 62. 00:04:28Setting Up Model Parameters For Training
-
Урок 63. 00:05:40Understanding The Mathematics Behind Cross Entropy Loss
-
Урок 64. 00:06:57Finishing Our Script.py File
-
Урок 65. 00:07:36Quota Increase
-
Урок 66. 00:08:16Starting Our Training Job
-
Урок 67. 00:14:17Debugging Our Training Job With AWS CloudWatch
-
Урок 68. 00:05:47Analyzing Our Training Job Results
-
Урок 69. 00:08:35Creating Our Inference Script For Our PyTorch Model
-
Урок 70. 00:09:13Finishing Our PyTorch Inference Script
-
Урок 71. 00:07:31Setting Up Our Deployment
-
Урок 72. 00:08:55Deploying Our Model To A SageMaker Endpoint
-
Урок 73. 00:04:20Introduction to Endpoint Load Testing
-
Урок 74. 00:10:03Creating Our Test Data for Load Testing
-
Урок 75. 00:01:04Upload Testing Data to S3
-
Урок 76. 00:03:59Creating Our Model for Load Testing
-
Урок 77. 00:07:15Starting Our Load Test Job
-
Урок 78. 00:10:17Analyze Load Test Results
-
Урок 79. 00:03:51Deploying Our Endpoint
-
Урок 80. 00:10:27Creating Lambda Function to Call Our Endpoint
-
Урок 81. 00:05:28Setting Up Our AWS API Gateway
-
Урок 82. 00:05:40Testing Our Model with Postman, API Gateway and Lambda
-
Урок 83. 00:02:52Cleaning Up Resources
-
Урок 84. 00:01:18Thank You!