-
Урок 1.
00:05:26
Introduction and Outline
-
Урок 2.
00:04:34
Warmup (Optional)
-
Урок 3.
00:08:00
Where to Get the Code
-
Урок 4.
00:08:57
How to use Github & Extra Coding Tips (Optional)
-
Урок 5.
00:04:19
Time Series Basics Section Introduction
-
Урок 6.
00:04:53
What is a Time Series?
-
Урок 7.
00:02:31
Modeling vs. Predicting
-
Урок 8.
00:05:57
Why Do We Care About Shapes?
-
Урок 9.
00:06:34
Types of Tasks
-
Урок 10.
00:06:04
Power, Log, and Box-Cox Transformations
-
Урок 11.
00:06:06
Power, Log, and Box-Cox Transformations in Code
-
Урок 12.
00:11:23
Forecasting Metrics
-
Урок 13.
00:11:03
Financial Time Series Primer
-
Урок 14.
00:03:07
Price Simulations in Code
-
Урок 15.
00:14:36
Random Walks and the Random Walk Hypothesis
-
Урок 16.
00:06:46
The Naive Forecast and the Importance of Baselines
-
Урок 17.
00:07:15
Naive Forecast and Forecasting Metrics in Code
-
Урок 18.
00:03:15
Time Series Basics Section Summary
-
Урок 19.
00:03:11
Suggestion Box
-
Урок 20.
00:03:03
Exponential Smoothing Section Introduction
-
Урок 21.
00:05:38
Exponential Smoothing Intuition for Beginners
-
Урок 22.
00:03:37
SMA Theory
-
Урок 23.
00:08:42
SMA Code
-
Урок 24.
00:11:08
EWMA Theory
-
Урок 25.
00:07:40
EWMA Code
-
Урок 26.
00:10:14
SES Theory
-
Урок 27.
00:11:56
SES Code
-
Урок 28.
00:07:56
Holt's Linear Trend Model (Theory)
-
Урок 29.
00:03:14
Holt's Linear Trend Model (Code)
-
Урок 30.
00:11:21
Holt-Winters (Theory)
-
Урок 31.
00:07:53
Holt-Winters (Code)
-
Урок 32.
00:09:07
Walk-Forward Validation
-
Урок 33.
00:08:30
Walk-Forward Validation in Code
-
Урок 34.
00:05:01
Application: Sales Data
-
Урок 35.
00:05:38
Application: Stock Predictions
-
Урок 36.
00:03:07
SMA Application: COVID-19 Counting
-
Урок 37.
00:02:09
SMA Application: Algorithmic Trading
-
Урок 38.
00:04:00
Exponential Smoothing Section Summary
-
Урок 39.
00:11:23
(Optional) More About State-Space Models
-
Урок 40.
00:05:19
ARIMA Section Introduction
-
Урок 41.
00:12:52
Autoregressive Models - AR(p)
-
Урок 42.
00:03:32
Moving Average Models - MA(q)
-
Урок 43.
00:10:46
ARIMA
-
Урок 44.
00:19:16
ARIMA in Code
-
Урок 45.
00:13:02
Stationarity
-
Урок 46.
00:09:51
Stationarity in Code
-
Урок 47.
00:10:11
ACF (Autocorrelation Function)
-
Урок 48.
00:06:56
PACF (Partial Autocorrelation Funtion)
-
Урок 49.
00:08:27
ACF and PACF in Code (pt 1)
-
Урок 50.
00:07:04
ACF and PACF in Code (pt 2)
-
Урок 51.
00:09:42
Auto ARIMA and SARIMAX
-
Урок 52.
00:09:51
Model Selection, AIC and BIC
-
Урок 53.
00:14:05
Auto ARIMA in Code
-
Урок 54.
00:15:46
Auto ARIMA in Code (Stocks)
-
Урок 55.
00:07:02
ACF and PACF for Stock Returns
-
Урок 56.
00:09:46
Auto ARIMA in Code (Sales Data)
-
Урок 57.
00:09:15
How to Forecast with ARIMA
-
Урок 58.
00:01:27
Forecasting Out-Of-Sample
-
Урок 59.
00:03:32
ARIMA Section Summary
-
Урок 60.
00:02:31
Vector Autoregression Section Introduction
-
Урок 61.
00:13:12
VAR and VARMA Theory
-
Урок 62.
00:07:37
VARMA Code (pt 1)
-
Урок 63.
00:06:48
VARMA Code (pt 2)
-
Урок 64.
00:06:26
VARMA Code (pt 3)
-
Урок 65.
00:07:52
VARMA Econometrics Code (pt 1)
-
Урок 66.
00:09:18
VARMA Econometrics Code (pt 2)
-
Урок 67.
00:04:29
Granger Causality
-
Урок 68.
00:03:20
Granger Causality Code
-
Урок 69.
00:11:46
Converting Between Models (Optional)
-
Урок 70.
00:03:40
Vector Autoregression Section Summary
-
Урок 71.
00:03:53
Machine Learning Section Introduction
-
Урок 72.
00:14:27
Supervised Machine Learning: Classification and Regression
-
Урок 73.
00:07:35
Autoregressive Machine Learning Models
-
Урок 74.
00:05:06
Machine Learning Algorithms: Linear Regression
-
Урок 75.
00:06:55
Machine Learning Algorithms: Logistic Regression
-
Урок 76.
00:10:03
Machine Learning Algorithms: Support Vector Machines
-
Урок 77.
00:06:53
Machine Learning Algorithms: Random Forest
-
Урок 78.
00:08:48
Extrapolation and Stock Prices
-
Урок 79.
00:13:01
Machine Learning for Time Series Forecasting in Code (pt 1)
-
Урок 80.
00:04:22
Forecasting with Differencing
-
Урок 81.
00:06:48
Machine Learning for Time Series Forecasting in Code (pt 2)
-
Урок 82.
00:05:25
Application: Sales Data
-
Урок 83.
00:04:53
Application: Predicting Stock Prices and Returns
-
Урок 84.
00:04:07
Application: Predicting Stock Movements
-
Урок 85.
00:02:24
Machine Learning Section Summary
-
Урок 86.
00:03:25
Artificial Neural Networks: Section Introduction
-
Урок 87.
00:09:59
The Neuron
-
Урок 88.
00:09:41
Forward Propagation
-
Урок 89.
00:09:44
The Geometrical Picture
-
Урок 90.
00:17:19
Activation Functions
-
Урок 91.
00:08:42
Multiclass Classification
-
Урок 92.
00:11:57
ANN Code Preparation
-
Урок 93.
00:10:16
Feedforward ANN for Time Series Forecasting Code
-
Урок 94.
00:08:51
Feedforward ANN for Stock Return and Price Predictions Code
-
Урок 95.
00:05:54
Human Activity Recognition Dataset
-
Урок 96.
00:06:24
Human Activity Recognition: Code Preparation
-
Урок 97.
00:07:36
Human Activity Recognition: Data Exploration
-
Урок 98.
00:11:00
Human Activity Recognition: Multi-Input ANN
-
Урок 99.
00:05:57
Human Activity Recognition: Feature-Based Model
-
Урок 100.
00:03:07
Human Activity Recognition: Combined Model
-
Урок 101.
00:10:50
How Does a Neural Network "Learn"?
-
Урок 102.
00:02:19
Artificial Neural Networks: Section Summary
-
Урок 103.
00:03:08
CNN Section Introduction
-
Урок 104.
00:16:39
What is Convolution?
-
Урок 105.
00:05:57
What is Convolution? (Pattern-Matching)
-
Урок 106.
00:06:56
What is Convolution? (Weight Sharing)
-
Урок 107.
00:15:59
Convolution on Color Images
-
Урок 108.
00:05:00
Convolution for Time Series and ARIMA
-
Урок 109.
00:23:22
CNN Architecture
-
Урок 110.
00:06:17
CNN Code Preparation
-
Урок 111.
00:06:46
CNN for Time Series Forecasting in Code
-
Урок 112.
00:06:23
CNN for Human Activity Recognition
-
Урок 113.
00:03:15
CNN Section Summary
-
Урок 114.
00:04:47
RNN Section Introduction
-
Урок 115.
00:09:21
Simple RNN / Elman Unit (pt 1)
-
Урок 116.
00:09:43
Simple RNN / Elman Unit (pt 2)
-
Урок 117.
00:03:31
Aside: State Space Models vs. RNNs
-
Урок 118.
00:08:39
RNN Code Preparation
-
Урок 119.
00:08:27
RNNs: Understanding by Implementing (Paying Attention to Shapes)
-
Урок 120.
00:17:36
GRU and LSTM (pt 1)
-
Урок 121.
00:11:37
GRU and LSTM (pt 2)
-
Урок 122.
00:09:29
LSTMs for Time Series Forecasting in Code
-
Урок 123.
00:06:11
LSTMs for Time Series Classification in Code
-
Урок 124.
00:03:19
The Unreasonable Ineffectiveness of Recurrent Neural Networks
-
Урок 125.
00:02:58
RNN Section Summary
-
Урок 126.
00:03:57
GARCH Section Introduction
-
Урок 127.
00:04:58
ARCH Theory (pt 1)
-
Урок 128.
00:07:37
ARCH Theory (pt 2)
-
Урок 129.
00:05:16
ARCH Theory (pt 3)
-
Урок 130.
00:07:41
GARCH Theory
-
Урок 131.
00:07:55
GARCH Code Preparation (pt 1)
-
Урок 132.
00:07:56
GARCH Code Preparation (pt 2)
-
Урок 133.
00:06:08
GARCH Code (pt 1)
-
Урок 134.
00:08:31
GARCH Code (pt 2)
-
Урок 135.
00:07:12
GARCH Code (pt 3)
-
Урок 136.
00:05:53
GARCH Code (pt 4)
-
Урок 137.
00:04:21
GARCH Code (pt 5)
-
Урок 138.
00:11:28
A Deep Learning Approach to GARCH
-
Урок 139.
00:06:37
GARCH Section Summary
-
Урок 140.
00:08:03
AWS Forecast Section Introduction
-
Урок 141.
00:09:17
Data Model
-
Урок 142.
00:04:10
Creating an IAM Role
-
Урок 143.
00:10:00
Code pt 1 (Getting and Transforming the Data)
-
Урок 144.
00:12:53
Code pt 2 (Uploading the data to S3)
-
Урок 145.
00:06:53
Code pt 3 (Building your Model)
-
Урок 146.
00:06:50
Code pt 4 (Generating and Evaluating the Forecast)
-
Урок 147.
00:02:55
AWS Forecast Exercise
-
Урок 148.
00:04:56
AWS Forecast Section Summary
-
Урок 149.
00:03:12
Prophet Section Introduction
-
Урок 150.
00:08:25
How does Prophet work?
-
Урок 151.
00:12:42
Prophet: Code Preparation
-
Урок 152.
00:09:00
Prophet in Code: Data Preparation
-
Урок 153.
00:08:31
Prophet in Code: Fit, Forecast, Plot
-
Урок 154.
00:10:20
Prophet in Code: Holidays and Exogenous Regressors
-
Урок 155.
00:06:08
Prophet in Code: Cross-Validation
-
Урок 156.
00:04:15
Prophet in Code: Changepoint Detection
-
Урок 157.
00:10:17
Prophet: Multiplicative Seasonality, Outliers, Non-Daily Data
-
Урок 158.
00:13:11
(The Dangers of) Prophet for Stock Price Prediction
-
Урок 159.
00:03:28
Prophet Section Summary
-
Урок 160.
00:20:21
Anaconda Environment Setup
-
Урок 161.
00:17:23
How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow
-
Урок 162.
00:15:57
How to Code by Yourself (part 1)
-
Урок 163.
00:09:24
How to Code by Yourself (part 2)
-
Урок 164.
00:12:30
Proof that using Jupyter Notebook is the same as not using it
-
Урок 165.
00:10:25
How to Succeed in this Course (Long Version)
-
Урок 166.
00:22:05
Is this for Beginners or Experts? Academic or Practical? Fast or slow-paced?
-
Урок 167.
00:11:19
Machine Learning and AI Prerequisite Roadmap (pt 1)
-
Урок 168.
00:16:08
Machine Learning and AI Prerequisite Roadmap (pt 2)
-
Урок 169.
00:02:49
What is the Appendix?
-
Урок 170.
00:05:32
BONUS Lecture