Урок 1.00:08:01
Broad introduction to neural time series analysis
Урок 2.00:15:58
Neural data science as source sepatation
Урок 3.00:11:59
What to expect from this course
Урок 4.00:02:31
A quick note about how this went from 2 to 1 course
Урок 5.00:21:37
Origin, significance, and interpretation of EEG
Урок 6.00:13:40
Overview of possible preprocessing steps
Урок 7.00:19:02
ICA for data cleaning
Урок 8.00:15:49
Signal artifacts (not) to worry about
Урок 9.00:12:28
Topographical mapping
Урок 10.00:16:20
Overview of time-domain analyses (ERPs)
Урок 11.00:16:40
Motivations for rhythm-based analyses
Урок 12.00:16:12
Interpreting time-frequency plots
Урок 13.00:04:27
The empirical datasets used in this course
Урок 14.00:19:32
MATLAB: EEG dataset
Урок 15.00:08:15
MATLAB: V1 dataset
Урок 16.00:04:11
Where to get more EEG data?
Урок 17.00:21:58
Simulating data to understand analysis methods
Урок 18.00:04:09
Problem set: introduction and explanation
Урок 19.00:35:19
Problem set (1/2): Simulating and visualizing data
Урок 20.00:36:19
Problem set (2/2): Simulating and visualizing data
Урок 21.00:08:27
Why simulate data?
Урок 22.00:12:25
Generating white and pink noise
Урок 23.00:23:02
The three important equations (sine, Gaussian, Euler's)
Урок 24.00:06:42
Generating "chirps" (frequency-modulated signals)
Урок 25.00:05:28
Non-stationary narrowband activity via filtered noise
Урок 26.00:07:23
Transient oscillation
Урок 27.00:12:59
The eeglab EEG structure
Урок 28.00:09:31
Project 1-1: Channel-level EEG data
Урок 29.00:11:48
Project 1-1: Solutions
Урок 30.00:09:06
Projecting dipoles onto EEG electrodes
Урок 31.00:04:51
Project 1-2: dipole-level EEG data
Урок 32.00:10:47
Project 1-2: Solutions
Урок 33.00:17:43
Event-related potential (ERP)
Урок 34.00:16:56
Lowpass filter an ERP
Урок 35.00:07:10
Compute the average reference
Урок 36.00:06:12
Butterfly plot and topo-variance time series
Урок 37.00:12:58
Topography time series
Урок 38.00:09:38
Simulate ERPs from two dipoles
Урок 39.00:07:08
Project 2-1: Quantify the ERP as peak-mean or peak-to-peak
Урок 40.00:15:20
Project 2-1: Solutions
Урок 41.00:02:31
Project 2-2: ERP peak latency topoplot
Урок 42.00:08:09
Project 2-2: Solutions
Урок 43.00:09:43
Time and frequency domains
Урок 44.00:08:06
Sine waves
Урок 45.00:09:26
MATLAB: Sine waves and their parameters
Урок 46.00:14:24
Complex numbers
Урок 47.00:12:04
Euler's formula
Урок 48.00:12:25
MATLAB: Complex numbers and Euler's formula
Урок 49.00:09:41
The dot product
Урок 50.00:10:38
MATLAB: Dot product and sine waves
Урок 51.00:04:52
Complex sine waves
Урок 52.00:06:33
MATLAB: Complex sine waves
Урок 53.00:07:13
The complex dot product
Урок 54.00:13:55
MATLAB: The complex dot product
Урок 55.00:12:31
Fourier coefficients
Урок 56.00:15:23
MATLAB: The discrete-time Fourier transform
Урок 57.00:16:53
MATLAB: Fourier coefficients as complex numbers
Урок 58.00:12:23
Frequencies in the Fourier transform
Урок 59.00:14:34
Positive and negative frequencies
Урок 60.00:08:34
Accurate scaling of Fourier coefficients
Урок 61.00:17:28
MATLAB: Positive/negative spectrum; amplitude scaling
Урок 62.00:14:51
MATLAB: Spectral analysis of resting-state EEG
Урок 63.00:18:52
MATLAB: Quantify alpha power over the scalp
Урок 64.00:09:46
The perfection of the Fourier transform
Урок 65.00:06:52
The inverse Fourier transform
Урок 66.00:10:06
MATLAB: Reconstruct a signal via inverse FFT
Урок 67.00:10:15
Frequency resolution and zero-padding
Урок 68.00:16:39
MATLAB: Frequency resolution and zero-padding
Урок 69.00:08:06
Estimation errors and Fourier coefficients
Урок 70.00:13:07
Signal nonstationarities
Урок 71.00:10:32
MATLAB: Examples of sharp nonstationarities on power spectra
Урок 72.00:17:11
MATLAB: Examples of smooth nonstationarities on power spectra
Урок 73.00:11:14
Welch's method for smooth spectral decomposition
Урок 74.00:11:48
MATLAB: Welch's method on phase-slip data
Урок 75.00:06:28
MATLAB: Welch's method on resting-state EEG data
Урок 76.00:05:37
MATLAB: Welch's method on V1 dataset
Урок 77.00:33:01
Problem set (1/2): Spectral analyses of real and simulated data
Урок 78.00:37:10
Problem set (2/2): Spectral analyses of real and simulated data
Урок 79.00:04:19
Program the Fourier transform from scratch!
Урок 80.00:05:52
Program the inverse Fourier transform from scratch!
Урок 81.00:06:01
Spectral separation on simulated dipole data
Урок 82.00:12:38
FFT of stationary and non-stationary simulated data
Урок 83.00:12:01
FFT and Welch's method on EEG resting state data
Урок 84.00:16:51
To taper or not to taper?
Урок 85.00:04:54
Extracting average power from a frequency band
Урок 86.00:11:40
Comparing average spectra vs. spectra of an average
Урок 87.00:04:23
Project 3-1: Topography of spectrally separated activity
Урок 88.00:11:56
Project 3-1: Solutions
Урок 89.00:03:52
Project 3-2: Topography of alpha-theta ratio
Урок 90.00:11:22
Project 3-2: Solutions
Урок 91.00:17:48
Morlet wavelets in time and in frequency
Урок 92.00:14:10
MATLAB: Getting to know Morlet wavelets
Урок 93.00:23:37
Convolution in the time domain
Урок 94.00:14:21
MATLAB: Time-domain convolution
Урок 95.00:19:30
Convolution as spectral multiplication
Урок 96.00:08:29
MATLAB: The five steps of convolution
Урок 97.00:12:57
MATLAB: Convolve real data with a Gaussian
Урок 98.00:08:33
MATLAB: Complex Morlet wavelets
Урок 99.00:12:44
Complex Morlet wavelet convolution
Урок 100.00:07:55
Convolution coding tips
Урок 101.00:19:03
MATLAB: Complex Morlet wavelet convolution
Урок 102.00:08:27
MATLAB: Convolution with all trials!
Урок 103.00:09:51
MATLAB: A full time-frequency power plot!
Урок 104.00:13:07
Averaging phase values
Урок 105.00:15:17
Inter-trial phase clustering (ITPC/ITC)
Урок 106.00:13:19
MATLAB: ITPC
Урок 107.00:18:19
Parameters of Morlet wavelet (time-frequency trade-off)
Урок 108.00:18:56
MATLAB: Time-frequency trade-off
Урок 109.00:05:30
The stationarity assumption of wavelet convolution
Урок 110.00:14:57
The "1/f" structure of spectral brain dynamics
Урок 111.00:18:35
Baseline normalization of time-frequency power
Урок 112.00:13:43
MATLAB: Baseline normalization of TF plots
Урок 113.00:11:29
Scale-free dynamics via detrended fluctuation analysis (DFA)
Урок 114.00:21:19
MATLAB: detrended fluctuation analysis
Урок 115.00:23:07
The filter-Hilbert time-frequency method
Урок 116.00:17:28
MATLAB: Filter-Hilbert
Урок 117.00:07:34
The short-time Fourier transform (STFFT)
Урок 118.00:07:41
MATLAB: STFFT
Урок 119.00:13:23
Comparing wavelet, filter-Hilbert, and STFFT
Урок 120.00:11:04
The multi-taper method
Урок 121.00:16:17
Within-subject, cross-trial regression
Урок 122.00:23:42
MATLAB: Cross-trial regression
Урок 123.00:09:25
Temporal resolution vs. precision, pre- and post-convolution
Урок 124.00:17:07
MATLAB: Downsampling time-frequency results
Урок 125.00:13:46
MATLAB: Linear vs. logarithmic frequency scaling
Урок 126.00:12:24
Separating phase-locked and non-phase-locked activity
Урок 127.00:19:28
MATLAB: Total, non-phase-locked, and phase-locked power
Урок 128.00:09:42
Edge effects, buffer zones, and data epoch length
Урок 129.00:29:19
Problem set (1/3): Time-frequency analysis
Урок 130.00:21:19
Problem set (2/3): Time-frequency analysis
Урок 131.00:35:00
Problem set (2/3): Time-frequency analysis
Урок 132.00:09:58
Create a family of complex Morlet wavelets
Урок 133.00:12:40
Create a time-frequency plot of a nonlinear chirp
Урок 134.00:09:58
Compare wavelet-derived spectrum and FFT
Урок 135.00:11:25
Wavelet convolution of close frequencies
Урок 136.00:07:52
Time-frequency power of multitrial EEG activity
Урок 137.00:11:06
Baseline normalize power with dB and % change
Урок 138.00:11:02
Exploring wavelet parameters in real data
Урок 139.00:10:39
Exploring wavelet parameters in simulated data
Урок 140.00:09:45
Inter-trial phase clustering before vs. after removing ERP
Урок 141.00:07:38
Downsampling time-frequency power
Урок 142.00:06:56
Visualize time-frequency power from all channels
Урок 143.00:12:42
Instantaneous frequency in simulated data
Урок 144.00:08:19
Instantaneous frequency in real data
Урок 145.00:04:38
Project 4-1: Phase-locked, non-phase-locked, and total power
Урок 146.00:13:53
Project 4-1: Solutions
Урок 147.00:12:21
Narrowband filtering and the Hilbert transform
Урок 148.00:03:02
Project 4-2: Time-frequency power plot via filter-Hilbert
Урок 149.00:07:38
Project 4-2: Solutions
Урок 150.00:16:12
Four things to keep in mind about connectivity
Урок 151.00:10:30
Volume conduction and what to do about it
Урок 152.00:13:13
Intuition about phase synchronization
Урок 153.00:09:42
Inter-site phase clustering (ISPC)
Урок 154.00:17:32
MATLAB: ISPC
Урок 155.00:11:03
Surface Laplacian for connectivity analyses
Урок 156.00:10:20
MATLAB: Laplacian in simulated data
Урок 157.00:14:45
MATLAB: Laplacian in real EEG data
Урок 158.00:12:14
Phase-lag-based connectivity
Урок 159.00:14:40
MATLAB: phase-lag index
Урок 160.00:17:49
When to use phase-lag vs. phase-clustering measures
Урок 161.00:18:59
MATLAB: Phase synchronization in voltage and Laplacian data
Урок 162.00:07:17
Connectivity over time vs. over trials
Урок 163.00:07:43
MATLAB: Connectivity over time vs. over trials
Урок 164.00:17:38
MATLAB: Simulating data to test connectivity methods
Урок 165.00:10:20
Two methods of power-based connectivity
Урок 166.00:32:18
Granger causality (prediction)
Урок 167.00:22:37
MATLAB: Granger causality
Урок 168.00:12:58
"Hubness" from graph theory
Урок 169.00:23:00
MATLAB: Connectivity hubs
Урок 170.00:06:20
When to use which connectivity method?
Урок 171.00:22:30
Problem set (1/2): Pairwise synchronization
Урок 172.00:32:08
Problem set (2/2): Pairwise synchronization
Урок 173.00:12:18
Synchronization in simulated noisy oscillators
Урок 174.00:12:05
Spurious connectivity in narrowband noise
Урок 175.00:15:41
Phase synchronization matrices in multitrial data
Урок 176.00:17:11
Power time series correlations
Урок 177.00:11:14
Power correlations over trials
Урок 178.00:10:43
Scalp Laplacian for electrode-level connectivity
Урок 179.00:14:04
All-to-all synchronization and "hubness" (graph theory)
Урок 180.00:14:46
Phase-lag index
Урок 181.00:05:09
Project 5-1: ISPC and PLI, with and without Laplacian
Урок 182.00:05:32
Project 5-1: Solutions
Урок 183.00:03:51
Project 5-2: Seeded phase vs. power coupling
Урок 184.00:07:37
Project 5-2: Solutions
Урок 185.00:15:30
Introduction: The basis of statistics, necessity, and levels
Урок 186.00:14:34
Parametric vs. nonparametric statistics
Урок 187.00:25:59
Permutation-based statistics
Урок 188.00:20:03
MATLAB: Permutation testing and shuffling
Урок 189.00:23:58
MATLAB: Permutation testing in real data
Урок 190.00:08:35
Multiple comparisons and limitations of Bonferroni method
Урок 191.00:10:52
Cluster-based multiple comparisons correction
Урок 192.00:12:42
MATLAB: Cluster correction
Урок 193.00:09:49
Extreme pixel-based multiple comparisons correction
Урок 194.00:14:04
MATLAB: Extreme pixel correction
Урок 195.00:05:32
Illustrating statistical significance in plots
Урок 196.00:10:43
Subject- vs. group-level analyses
Урок 197.00:06:07
Error bars and guessing significance
Урок 198.00:18:37
Three approaches for group-level statistics
Урок 199.00:15:00
MATLAB: Extracting features for group analyses
Урок 200.00:14:00
Circular inference ("double-dipping")
Урок 201.00:19:52
Permutation testing for one variable and two groups
Урок 202.00:08:22
Meta-permutation test for increased stability
Урок 203.00:18:35
Permutation testing in simulated time series
Урок 204.00:13:56
Permutation testing for cluster correction in simulated data
Урок 205.00:13:20
Permutation testing and cluster correction in real EEG data
Урок 206.00:05:06
Project 7-1: Effects of noise smoothness on cluster correction
Урок 207.00:15:31
Project 7-1: Solutions
Урок 208.00:08:11
Project 7-2: Simulate time-frequency data for statistical testing
Урок 209.00:14:02
Project 7-2: Solutions
Урок 210.00:01:18
Background knowledge for this section
Урок 211.00:10:10
Simulate multicomponent EEG data
Урок 212.00:15:59
Create covariance matrices based on time and on frequency
Урок 213.00:11:16
Principal components analysis (PCA) of simulated data
Урок 214.00:10:58
Time-based GED for source-separation in simulated data
Урок 215.00:09:27
Frequency-based GED for source-separation in simulated data
Урок 216.00:10:48
Project 6-1: GED for interacting alpha sources
Урок 217.00:08:53
Project 6-1: Solutions