Урок 1.00:08:04
What is linear algebra?
Урок 2.00:05:58
Linear algebra applications
Урок 3.00:13:14
An enticing start to a linear algebra course!
Урок 4.00:04:00
How best to learn from this course
Урок 5.00:07:58
Maximizing your Udemy experience
Урок 6.00:07:31
Using MATLAB, Octave, or Python in this course
Урок 7.00:12:46
Algebraic and geometric interpretations of vectors
Урок 8.00:08:27
Vector addition and subtraction
Урок 9.00:09:08
Vector-scalar multiplication
Урок 10.00:10:12
Vector-vector multiplication: the dot product
Урок 11.00:18:56
Dot product properties: associative, distributive, commutative
Урок 12.00:08:46
Code challenge: dot products with matrix columns
Урок 13.00:06:43
Vector length
Урок 14.00:23:39
Dot product geometry: sign and orthogonality
Урок 15.00:12:06
Code challenge: dot product sign and scalar multiplication
Урок 16.00:09:33
Code challenge: is the dot product commutative?
Урок 17.00:03:44
Vector Hadamard multiplication
Урок 18.00:10:18
Outer product
Урок 19.00:09:06
Vector cross product
Урок 20.00:08:18
Vectors with complex numbers
Урок 21.00:16:22
Hermitian transpose (a.k.a. conjugate transpose)
Урок 22.00:07:59
Interpreting and creating unit vectors
Урок 23.00:13:34
Code challenge: dot products with unit vectors
Урок 24.00:07:55
Dimensions and fields in linear algebra
Урок 25.00:15:51
Subspaces
Урок 26.00:05:48
Subspaces vs. subsets
Урок 27.00:13:30
Span
Урок 28.00:15:35
Linear independence
Урок 29.00:11:52
Basis
Урок 30.00:08:15
Matrix terminology and dimensionality
Урок 31.00:17:20
A zoo of matrices
Урок 32.00:08:29
Matrix addition and subtraction
Урок 33.00:02:34
Matrix-scalar multiplication
Урок 34.00:07:29
Code challenge: is matrix-scalar multiplication a linear operation?
Урок 35.00:10:25
Transpose
Урок 36.00:01:52
Complex matrices
Урок 37.00:09:08
Diagonal and trace
Урок 38.00:09:38
Code challenge: linearity of trace
Урок 39.00:14:14
Broadcasting matrix arithmetic
Урок 40.00:10:28
Introduction to standard matrix multiplication
Урок 41.00:11:56
Four ways to think about matrix multiplication
Урок 42.00:09:46
Code challenge: matrix multiplication by layering
Урок 43.00:03:43
Matrix multiplication with a diagonal matrix
Урок 44.00:08:16
Order-of-operations on matrices
Урок 45.00:16:44
Matrix-vector multiplication
Урок 46.00:15:33
2D transformation matrices
Урок 47.00:12:39
Code challenge: Pure and impure rotation matrices
Урок 48.00:15:59
Code challenge: Geometric transformations via matrix multiplications
Урок 49.00:06:20
Additive and multiplicative matrix identities
Урок 50.00:15:17
Additive and multiplicative symmetric matrices
Урок 51.00:05:01
Hadamard (element-wise) multiplication
Урок 52.00:12:04
Code challenge: symmetry of combined symmetric matrices
Урок 53.00:13:22
Multiplication of two symmetric matrices
Урок 54.00:06:28
Code challenge: standard and Hadamard multiplication for diagonal matrices
Урок 55.00:11:21
Code challenge: Fourier transform via matrix multiplication!
Урок 56.00:11:17
Frobenius dot product
Урок 57.00:18:12
Matrix norms
Урок 58.00:11:53
Code challenge: conditions for self-adjoint
Урок 59.00:04:25
What about matrix division?
Урок 60.00:10:51
Rank: concepts, terms, and applications
Урок 61.00:23:02
Computing rank: theory and practice
Урок 62.00:11:47
Rank of added and multiplied matrices
Урок 63.00:10:39
Code challenge: reduced-rank matrix via multiplication
Урок 64.00:12:11
Code challenge: scalar multiplication and rank
Урок 65.00:10:42
Rank of A^TA and AA^T
Урок 66.00:07:07
Code challenge: rank of multiplied and summed matrices
Урок 67.00:14:13
Making a matrix full-rank by "shifting"
Урок 68.00:11:47
Code challenge: is this vector in the span of this set?
Урок 69.00:03:04
Course tangent: self-accountability in online learning
Урок 70.00:13:30
Column space of a matrix
Урок 71.00:06:36
Column space, visualized in code
Урок 72.00:04:26
Row space of a matrix
Урок 73.00:14:40
Null space and left null space of a matrix
Урок 74.00:10:48
Column/left-null and row/null spaces are orthogonal
Урок 75.00:08:11
Dimensions of column/row/null spaces
Урок 76.00:11:10
Example of the four subspaces
Урок 77.00:07:53
More on Ax=b and Ax=0
Урок 78.00:19:40
Systems of equations: algebra and geometry
Урок 79.00:04:24
Converting systems of equations to matrix equations
Урок 80.00:14:43
Gaussian elimination
Урок 81.00:07:22
Echelon form and pivots
Урок 82.00:18:30
Reduced row echelon form
Урок 83.00:12:17
Code challenge: RREF of matrices with different sizes and ranks
Урок 84.00:09:24
Matrix spaces after row reduction
Урок 85.00:06:00
Determinant: concept and applications
Урок 86.00:07:04
Determinant of a 2x2 matrix
Урок 87.00:11:08
Code challenge: determinant of small and large singular matrices
Урок 88.00:13:14
Determinant of a 3x3 matrix
Урок 89.00:06:33
Code challenge: large matrices with row exchanges
Урок 90.00:04:52
Find matrix values for a given determinant
Урок 91.00:18:28
Code challenge: determinant of shifted matrices
Урок 92.00:10:38
Code challenge: determinant of matrix product
Урок 93.00:12:41
Matrix inverse: Concept and applications
Урок 94.00:06:32
Computing the inverse in code
Урок 95.00:07:56
Inverse of a 2x2 matrix
Урок 96.00:13:59
The MCA algorithm to compute the inverse
Урок 97.00:18:40
Code challenge: Implement the MCA algorithm!!
Урок 98.00:16:41
Computing the inverse via row reduction
Урок 99.00:10:51
Code challenge: inverse of a diagonal matrix
Урок 100.00:10:15
Left inverse and right inverse
Урок 101.00:12:41
One-sided inverses in code
Урок 102.00:03:17
Proof: the inverse is unique
Урок 103.00:11:35
Pseudo-inverse, part 1
Урок 104.00:06:03
Code challenge: pseudoinverse of invertible matrices
Урок 105.00:10:00
Projections in R^2
Урок 106.00:15:25
Projections in R^N
Урок 107.00:12:39
Orthogonal and parallel vector components
Урок 108.00:16:41
Code challenge: decompose vector to orthogonal components
Урок 109.00:12:03
Orthogonal matrices
Урок 110.00:12:44
Gram-Schmidt procedure
Урок 111.00:21:00
QR decomposition
Урок 112.00:20:36
Code challenge: Gram-Schmidt algorithm
Урок 113.00:01:46
Matrix inverse via QR decomposition
Урок 114.00:14:20
Code challenge: Inverse via QR
Урок 115.00:17:27
Code challenge: Prove and demonstrate the Sherman-Morrison inverse
Урок 116.00:06:01
Code challenge: A^TA = R^TR
Урок 117.00:13:13
Introduction to least-squares
Урок 118.00:10:08
Least-squares via left inverse
Урок 119.00:09:19
Least-squares via orthogonal projection
Урок 120.00:18:21
Least-squares via row-reduction
Урок 121.00:07:00
Model-predicted values and residuals
Урок 122.00:18:47
Least-squares application 1
Урок 123.00:29:41
Least-squares application 2
Урок 124.00:10:11
Code challenge: Least-squares via QR decomposition
Урок 125.00:12:53
What are eigenvalues and eigenvectors?
Урок 126.00:20:44
Finding eigenvalues
Урок 127.00:02:54
Shortcut for eigenvalues of a 2x2 matrix
Урок 128.00:14:25
Code challenge: eigenvalues of diagonal and triangular matrices
Урок 129.00:11:05
Code challenge: eigenvalues of random matrices
Урок 130.00:15:57
Finding eigenvectors
Урок 131.00:09:28
Eigendecomposition by hand: two examples
Урок 132.00:14:31
Diagonalization
Урок 133.00:20:37
Matrix powers via diagonalization
Урок 134.00:18:15
Code challenge: eigendecomposition of matrix differences
Урок 135.00:08:15
Eigenvectors of distinct eigenvalues
Урок 136.00:12:16
Eigenvectors of repeated eigenvalues
Урок 137.00:14:04
Eigendecomposition of symmetric matrices
Урок 138.00:07:20
Eigenlayers of a matrix
Урок 139.00:20:11
Code challenge: reconstruct a matrix from eigenlayers
Урок 140.00:05:00
Eigendecomposition of singular matrices
Урок 141.00:10:57
Code challenge: trace and determinant, eigenvalues sum and product
Урок 142.00:12:31
Generalized eigendecomposition
Урок 143.00:21:10
Code challenge: GED in small and large matrices
Урок 144.00:18:41
Singular value decomposition (SVD)
Урок 145.00:24:32
Code challenge: SVD vs. eigendecomposition for square symmetric matrices
Урок 146.00:13:04
Relation between singular values and eigenvalues
Урок 147.00:18:24
Code challenge: U from eigendecomposition of A^TA
Урок 148.00:14:34
Code challenge: A^TA, Av, and singular vectors
Урок 149.00:07:35
SVD and the four subspaces
Урок 150.00:21:57
Spectral theory of matrices
Урок 151.00:16:43
SVD for low-rank approximations
Урок 152.00:15:26
Convert singular values to percent variance
Урок 153.00:12:04
Code challenge: When is UV^T valid, what is its norm, and is it orthogonal?
Урок 154.00:13:30
SVD, matrix inverse, and pseudoinverse
Урок 155.00:12:48
Condition number of a matrix
Урок 156.00:15:09
Code challenge: Create matrix with desired condition number
Урок 157.00:15:28
The quadratic form in algebra
Урок 158.00:15:36
The quadratic form in geometry
Урок 159.00:06:36
The normalized quadratic form
Урок 160.00:16:21
Code challenge: Visualize the normalized quadratic form
Урок 161.00:06:18
Eigenvectors and the quadratic form surface
Урок 162.00:29:02
Application of the normalized quadratic form: PCA
Урок 163.00:17:34
Quadratic form of generalized eigendecomposition
Урок 164.00:12:55
Matrix definiteness, geometry, and eigenvalues
Урок 165.00:06:52
Proof: A^TA is always positive (semi)definite
Урок 166.00:07:16
Proof: Eigenvalues and matrix definiteness