-
Урок 1.
00:08:04
What is linear algebra?
-
Урок 2.
00:05:58
Linear algebra applications
-
Урок 3.
00:13:14
An enticing start to a linear algebra course!
-
Урок 4.
00:04:00
How best to learn from this course
-
Урок 5.
00:07:58
Maximizing your Udemy experience
-
Урок 6.
00:07:31
Using MATLAB, Octave, or Python in this course
-
Урок 7.
00:12:46
Algebraic and geometric interpretations of vectors
-
Урок 8.
00:08:27
Vector addition and subtraction
-
Урок 9.
00:09:08
Vector-scalar multiplication
-
Урок 10.
00:10:12
Vector-vector multiplication: the dot product
-
Урок 11.
00:18:56
Dot product properties: associative, distributive, commutative
-
Урок 12.
00:08:46
Code challenge: dot products with matrix columns
-
Урок 13.
00:06:43
Vector length
-
Урок 14.
00:23:39
Dot product geometry: sign and orthogonality
-
Урок 15.
00:12:06
Code challenge: dot product sign and scalar multiplication
-
Урок 16.
00:09:33
Code challenge: is the dot product commutative?
-
Урок 17.
00:03:44
Vector Hadamard multiplication
-
Урок 18.
00:10:18
Outer product
-
Урок 19.
00:09:06
Vector cross product
-
Урок 20.
00:08:18
Vectors with complex numbers
-
Урок 21.
00:16:22
Hermitian transpose (a.k.a. conjugate transpose)
-
Урок 22.
00:07:59
Interpreting and creating unit vectors
-
Урок 23.
00:13:34
Code challenge: dot products with unit vectors
-
Урок 24.
00:07:55
Dimensions and fields in linear algebra
-
Урок 25.
00:15:51
Subspaces
-
Урок 26.
00:05:48
Subspaces vs. subsets
-
Урок 27.
00:13:30
Span
-
Урок 28.
00:15:35
Linear independence
-
Урок 29.
00:11:52
Basis
-
Урок 30.
00:08:15
Matrix terminology and dimensionality
-
Урок 31.
00:17:20
A zoo of matrices
-
Урок 32.
00:08:29
Matrix addition and subtraction
-
Урок 33.
00:02:34
Matrix-scalar multiplication
-
Урок 34.
00:07:29
Code challenge: is matrix-scalar multiplication a linear operation?
-
Урок 35.
00:10:25
Transpose
-
Урок 36.
00:01:52
Complex matrices
-
Урок 37.
00:09:08
Diagonal and trace
-
Урок 38.
00:09:38
Code challenge: linearity of trace
-
Урок 39.
00:14:14
Broadcasting matrix arithmetic
-
Урок 40.
00:10:28
Introduction to standard matrix multiplication
-
Урок 41.
00:11:56
Four ways to think about matrix multiplication
-
Урок 42.
00:09:46
Code challenge: matrix multiplication by layering
-
Урок 43.
00:03:43
Matrix multiplication with a diagonal matrix
-
Урок 44.
00:08:16
Order-of-operations on matrices
-
Урок 45.
00:16:44
Matrix-vector multiplication
-
Урок 46.
00:15:33
2D transformation matrices
-
Урок 47.
00:12:39
Code challenge: Pure and impure rotation matrices
-
Урок 48.
00:15:59
Code challenge: Geometric transformations via matrix multiplications
-
Урок 49.
00:06:20
Additive and multiplicative matrix identities
-
Урок 50.
00:15:17
Additive and multiplicative symmetric matrices
-
Урок 51.
00:05:01
Hadamard (element-wise) multiplication
-
Урок 52.
00:12:04
Code challenge: symmetry of combined symmetric matrices
-
Урок 53.
00:13:22
Multiplication of two symmetric matrices
-
Урок 54.
00:06:28
Code challenge: standard and Hadamard multiplication for diagonal matrices
-
Урок 55.
00:11:21
Code challenge: Fourier transform via matrix multiplication!
-
Урок 56.
00:11:17
Frobenius dot product
-
Урок 57.
00:18:12
Matrix norms
-
Урок 58.
00:11:53
Code challenge: conditions for self-adjoint
-
Урок 59.
00:04:25
What about matrix division?
-
Урок 60.
00:10:51
Rank: concepts, terms, and applications
-
Урок 61.
00:23:02
Computing rank: theory and practice
-
Урок 62.
00:11:47
Rank of added and multiplied matrices
-
Урок 63.
00:10:39
Code challenge: reduced-rank matrix via multiplication
-
Урок 64.
00:12:11
Code challenge: scalar multiplication and rank
-
Урок 65.
00:10:42
Rank of A^TA and AA^T
-
Урок 66.
00:07:07
Code challenge: rank of multiplied and summed matrices
-
Урок 67.
00:14:13
Making a matrix full-rank by "shifting"
-
Урок 68.
00:11:47
Code challenge: is this vector in the span of this set?
-
Урок 69.
00:03:04
Course tangent: self-accountability in online learning
-
Урок 70.
00:13:30
Column space of a matrix
-
Урок 71.
00:06:36
Column space, visualized in code
-
Урок 72.
00:04:26
Row space of a matrix
-
Урок 73.
00:14:40
Null space and left null space of a matrix
-
Урок 74.
00:10:48
Column/left-null and row/null spaces are orthogonal
-
Урок 75.
00:08:11
Dimensions of column/row/null spaces
-
Урок 76.
00:11:10
Example of the four subspaces
-
Урок 77.
00:07:53
More on Ax=b and Ax=0
-
Урок 78.
00:19:40
Systems of equations: algebra and geometry
-
Урок 79.
00:04:24
Converting systems of equations to matrix equations
-
Урок 80.
00:14:43
Gaussian elimination
-
Урок 81.
00:07:22
Echelon form and pivots
-
Урок 82.
00:18:30
Reduced row echelon form
-
Урок 83.
00:12:17
Code challenge: RREF of matrices with different sizes and ranks
-
Урок 84.
00:09:24
Matrix spaces after row reduction
-
Урок 85.
00:06:00
Determinant: concept and applications
-
Урок 86.
00:07:04
Determinant of a 2x2 matrix
-
Урок 87.
00:11:08
Code challenge: determinant of small and large singular matrices
-
Урок 88.
00:13:14
Determinant of a 3x3 matrix
-
Урок 89.
00:06:33
Code challenge: large matrices with row exchanges
-
Урок 90.
00:04:52
Find matrix values for a given determinant
-
Урок 91.
00:18:28
Code challenge: determinant of shifted matrices
-
Урок 92.
00:10:38
Code challenge: determinant of matrix product
-
Урок 93.
00:12:41
Matrix inverse: Concept and applications
-
Урок 94.
00:06:32
Computing the inverse in code
-
Урок 95.
00:07:56
Inverse of a 2x2 matrix
-
Урок 96.
00:13:59
The MCA algorithm to compute the inverse
-
Урок 97.
00:18:40
Code challenge: Implement the MCA algorithm!!
-
Урок 98.
00:16:41
Computing the inverse via row reduction
-
Урок 99.
00:10:51
Code challenge: inverse of a diagonal matrix
-
Урок 100.
00:10:15
Left inverse and right inverse
-
Урок 101.
00:12:41
One-sided inverses in code
-
Урок 102.
00:03:17
Proof: the inverse is unique
-
Урок 103.
00:11:35
Pseudo-inverse, part 1
-
Урок 104.
00:06:03
Code challenge: pseudoinverse of invertible matrices
-
Урок 105.
00:10:00
Projections in R^2
-
Урок 106.
00:15:25
Projections in R^N
-
Урок 107.
00:12:39
Orthogonal and parallel vector components
-
Урок 108.
00:16:41
Code challenge: decompose vector to orthogonal components
-
Урок 109.
00:12:03
Orthogonal matrices
-
Урок 110.
00:12:44
Gram-Schmidt procedure
-
Урок 111.
00:21:00
QR decomposition
-
Урок 112.
00:20:36
Code challenge: Gram-Schmidt algorithm
-
Урок 113.
00:01:46
Matrix inverse via QR decomposition
-
Урок 114.
00:14:20
Code challenge: Inverse via QR
-
Урок 115.
00:17:27
Code challenge: Prove and demonstrate the Sherman-Morrison inverse
-
Урок 116.
00:06:01
Code challenge: A^TA = R^TR
-
Урок 117.
00:13:13
Introduction to least-squares
-
Урок 118.
00:10:08
Least-squares via left inverse
-
Урок 119.
00:09:19
Least-squares via orthogonal projection
-
Урок 120.
00:18:21
Least-squares via row-reduction
-
Урок 121.
00:07:00
Model-predicted values and residuals
-
Урок 122.
00:18:47
Least-squares application 1
-
Урок 123.
00:29:41
Least-squares application 2
-
Урок 124.
00:10:11
Code challenge: Least-squares via QR decomposition
-
Урок 125.
00:12:53
What are eigenvalues and eigenvectors?
-
Урок 126.
00:20:44
Finding eigenvalues
-
Урок 127.
00:02:54
Shortcut for eigenvalues of a 2x2 matrix
-
Урок 128.
00:14:25
Code challenge: eigenvalues of diagonal and triangular matrices
-
Урок 129.
00:11:05
Code challenge: eigenvalues of random matrices
-
Урок 130.
00:15:57
Finding eigenvectors
-
Урок 131.
00:09:28
Eigendecomposition by hand: two examples
-
Урок 132.
00:14:31
Diagonalization
-
Урок 133.
00:20:37
Matrix powers via diagonalization
-
Урок 134.
00:18:15
Code challenge: eigendecomposition of matrix differences
-
Урок 135.
00:08:15
Eigenvectors of distinct eigenvalues
-
Урок 136.
00:12:16
Eigenvectors of repeated eigenvalues
-
Урок 137.
00:14:04
Eigendecomposition of symmetric matrices
-
Урок 138.
00:07:20
Eigenlayers of a matrix
-
Урок 139.
00:20:11
Code challenge: reconstruct a matrix from eigenlayers
-
Урок 140.
00:05:00
Eigendecomposition of singular matrices
-
Урок 141.
00:10:57
Code challenge: trace and determinant, eigenvalues sum and product
-
Урок 142.
00:12:31
Generalized eigendecomposition
-
Урок 143.
00:21:10
Code challenge: GED in small and large matrices
-
Урок 144.
00:18:41
Singular value decomposition (SVD)
-
Урок 145.
00:24:32
Code challenge: SVD vs. eigendecomposition for square symmetric matrices
-
Урок 146.
00:13:04
Relation between singular values and eigenvalues
-
Урок 147.
00:18:24
Code challenge: U from eigendecomposition of A^TA
-
Урок 148.
00:14:34
Code challenge: A^TA, Av, and singular vectors
-
Урок 149.
00:07:35
SVD and the four subspaces
-
Урок 150.
00:21:57
Spectral theory of matrices
-
Урок 151.
00:16:43
SVD for low-rank approximations
-
Урок 152.
00:15:26
Convert singular values to percent variance
-
Урок 153.
00:12:04
Code challenge: When is UV^T valid, what is its norm, and is it orthogonal?
-
Урок 154.
00:13:30
SVD, matrix inverse, and pseudoinverse
-
Урок 155.
00:12:48
Condition number of a matrix
-
Урок 156.
00:15:09
Code challenge: Create matrix with desired condition number
-
Урок 157.
00:15:28
The quadratic form in algebra
-
Урок 158.
00:15:36
The quadratic form in geometry
-
Урок 159.
00:06:36
The normalized quadratic form
-
Урок 160.
00:16:21
Code challenge: Visualize the normalized quadratic form
-
Урок 161.
00:06:18
Eigenvectors and the quadratic form surface
-
Урок 162.
00:29:02
Application of the normalized quadratic form: PCA
-
Урок 163.
00:17:34
Quadratic form of generalized eigendecomposition
-
Урок 164.
00:12:55
Matrix definiteness, geometry, and eigenvalues
-
Урок 165.
00:06:52
Proof: A^TA is always positive (semi)definite
-
Урок 166.
00:07:16
Proof: Eigenvalues and matrix definiteness