1. Урок 1.00:08:04
    What is linear algebra?
  2. Урок 2.00:05:58
    Linear algebra applications
  3. Урок 3.00:13:14
    An enticing start to a linear algebra course!
  4. Урок 4.00:04:00
    How best to learn from this course
  5. Урок 5.00:07:58
    Maximizing your Udemy experience
  6. Урок 6.00:07:31
    Using MATLAB, Octave, or Python in this course
  7. Урок 7.00:12:46
    Algebraic and geometric interpretations of vectors
  8. Урок 8.00:08:27
    Vector addition and subtraction
  9. Урок 9.00:09:08
    Vector-scalar multiplication
  10. Урок 10.00:10:12
    Vector-vector multiplication: the dot product
  11. Урок 11.00:18:56
    Dot product properties: associative, distributive, commutative
  12. Урок 12.00:08:46
    Code challenge: dot products with matrix columns
  13. Урок 13.00:06:43
    Vector length
  14. Урок 14.00:23:39
    Dot product geometry: sign and orthogonality
  15. Урок 15.00:12:06
    Code challenge: dot product sign and scalar multiplication
  16. Урок 16.00:09:33
    Code challenge: is the dot product commutative?
  17. Урок 17.00:03:44
    Vector Hadamard multiplication
  18. Урок 18.00:10:18
    Outer product
  19. Урок 19.00:09:06
    Vector cross product
  20. Урок 20.00:08:18
    Vectors with complex numbers
  21. Урок 21.00:16:22
    Hermitian transpose (a.k.a. conjugate transpose)
  22. Урок 22.00:07:59
    Interpreting and creating unit vectors
  23. Урок 23.00:13:34
    Code challenge: dot products with unit vectors
  24. Урок 24.00:07:55
    Dimensions and fields in linear algebra
  25. Урок 25.00:15:51
    Subspaces
  26. Урок 26.00:05:48
    Subspaces vs. subsets
  27. Урок 27.00:13:30
    Span
  28. Урок 28.00:15:35
    Linear independence
  29. Урок 29.00:11:52
    Basis
  30. Урок 30.00:08:15
    Matrix terminology and dimensionality
  31. Урок 31.00:17:20
    A zoo of matrices
  32. Урок 32.00:08:29
    Matrix addition and subtraction
  33. Урок 33.00:02:34
    Matrix-scalar multiplication
  34. Урок 34.00:07:29
    Code challenge: is matrix-scalar multiplication a linear operation?
  35. Урок 35.00:10:25
    Transpose
  36. Урок 36.00:01:52
    Complex matrices
  37. Урок 37.00:09:08
    Diagonal and trace
  38. Урок 38.00:09:38
    Code challenge: linearity of trace
  39. Урок 39.00:14:14
    Broadcasting matrix arithmetic
  40. Урок 40.00:10:28
    Introduction to standard matrix multiplication
  41. Урок 41.00:11:56
    Four ways to think about matrix multiplication
  42. Урок 42.00:09:46
    Code challenge: matrix multiplication by layering
  43. Урок 43.00:03:43
    Matrix multiplication with a diagonal matrix
  44. Урок 44.00:08:16
    Order-of-operations on matrices
  45. Урок 45.00:16:44
    Matrix-vector multiplication
  46. Урок 46.00:15:33
    2D transformation matrices
  47. Урок 47.00:12:39
    Code challenge: Pure and impure rotation matrices
  48. Урок 48.00:15:59
    Code challenge: Geometric transformations via matrix multiplications
  49. Урок 49.00:06:20
    Additive and multiplicative matrix identities
  50. Урок 50.00:15:17
    Additive and multiplicative symmetric matrices
  51. Урок 51.00:05:01
    Hadamard (element-wise) multiplication
  52. Урок 52.00:12:04
    Code challenge: symmetry of combined symmetric matrices
  53. Урок 53.00:13:22
    Multiplication of two symmetric matrices
  54. Урок 54.00:06:28
    Code challenge: standard and Hadamard multiplication for diagonal matrices
  55. Урок 55.00:11:21
    Code challenge: Fourier transform via matrix multiplication!
  56. Урок 56.00:11:17
    Frobenius dot product
  57. Урок 57.00:18:12
    Matrix norms
  58. Урок 58.00:11:53
    Code challenge: conditions for self-adjoint
  59. Урок 59.00:04:25
    What about matrix division?
  60. Урок 60.00:10:51
    Rank: concepts, terms, and applications
  61. Урок 61.00:23:02
    Computing rank: theory and practice
  62. Урок 62.00:11:47
    Rank of added and multiplied matrices
  63. Урок 63.00:10:39
    Code challenge: reduced-rank matrix via multiplication
  64. Урок 64.00:12:11
    Code challenge: scalar multiplication and rank
  65. Урок 65.00:10:42
    Rank of A^TA and AA^T
  66. Урок 66.00:07:07
    Code challenge: rank of multiplied and summed matrices
  67. Урок 67.00:14:13
    Making a matrix full-rank by "shifting"
  68. Урок 68.00:11:47
    Code challenge: is this vector in the span of this set?
  69. Урок 69.00:03:04
    Course tangent: self-accountability in online learning
  70. Урок 70.00:13:30
    Column space of a matrix
  71. Урок 71.00:06:36
    Column space, visualized in code
  72. Урок 72.00:04:26
    Row space of a matrix
  73. Урок 73.00:14:40
    Null space and left null space of a matrix
  74. Урок 74.00:10:48
    Column/left-null and row/null spaces are orthogonal
  75. Урок 75.00:08:11
    Dimensions of column/row/null spaces
  76. Урок 76.00:11:10
    Example of the four subspaces
  77. Урок 77.00:07:53
    More on Ax=b and Ax=0
  78. Урок 78.00:19:40
    Systems of equations: algebra and geometry
  79. Урок 79.00:04:24
    Converting systems of equations to matrix equations
  80. Урок 80.00:14:43
    Gaussian elimination
  81. Урок 81.00:07:22
    Echelon form and pivots
  82. Урок 82.00:18:30
    Reduced row echelon form
  83. Урок 83.00:12:17
    Code challenge: RREF of matrices with different sizes and ranks
  84. Урок 84.00:09:24
    Matrix spaces after row reduction
  85. Урок 85.00:06:00
    Determinant: concept and applications
  86. Урок 86.00:07:04
    Determinant of a 2x2 matrix
  87. Урок 87.00:11:08
    Code challenge: determinant of small and large singular matrices
  88. Урок 88.00:13:14
    Determinant of a 3x3 matrix
  89. Урок 89.00:06:33
    Code challenge: large matrices with row exchanges
  90. Урок 90.00:04:52
    Find matrix values for a given determinant
  91. Урок 91.00:18:28
    Code challenge: determinant of shifted matrices
  92. Урок 92.00:10:38
    Code challenge: determinant of matrix product
  93. Урок 93.00:12:41
    Matrix inverse: Concept and applications
  94. Урок 94.00:06:32
    Computing the inverse in code
  95. Урок 95.00:07:56
    Inverse of a 2x2 matrix
  96. Урок 96.00:13:59
    The MCA algorithm to compute the inverse
  97. Урок 97.00:18:40
    Code challenge: Implement the MCA algorithm!!
  98. Урок 98.00:16:41
    Computing the inverse via row reduction
  99. Урок 99.00:10:51
    Code challenge: inverse of a diagonal matrix
  100. Урок 100.00:10:15
    Left inverse and right inverse
  101. Урок 101.00:12:41
    One-sided inverses in code
  102. Урок 102.00:03:17
    Proof: the inverse is unique
  103. Урок 103.00:11:35
    Pseudo-inverse, part 1
  104. Урок 104.00:06:03
    Code challenge: pseudoinverse of invertible matrices
  105. Урок 105.00:10:00
    Projections in R^2
  106. Урок 106.00:15:25
    Projections in R^N
  107. Урок 107.00:12:39
    Orthogonal and parallel vector components
  108. Урок 108.00:16:41
    Code challenge: decompose vector to orthogonal components
  109. Урок 109.00:12:03
    Orthogonal matrices
  110. Урок 110.00:12:44
    Gram-Schmidt procedure
  111. Урок 111.00:21:00
    QR decomposition
  112. Урок 112.00:20:36
    Code challenge: Gram-Schmidt algorithm
  113. Урок 113.00:01:46
    Matrix inverse via QR decomposition
  114. Урок 114.00:14:20
    Code challenge: Inverse via QR
  115. Урок 115.00:17:27
    Code challenge: Prove and demonstrate the Sherman-Morrison inverse
  116. Урок 116.00:06:01
    Code challenge: A^TA = R^TR
  117. Урок 117.00:13:13
    Introduction to least-squares
  118. Урок 118.00:10:08
    Least-squares via left inverse
  119. Урок 119.00:09:19
    Least-squares via orthogonal projection
  120. Урок 120.00:18:21
    Least-squares via row-reduction
  121. Урок 121.00:07:00
    Model-predicted values and residuals
  122. Урок 122.00:18:47
    Least-squares application 1
  123. Урок 123.00:29:41
    Least-squares application 2
  124. Урок 124.00:10:11
    Code challenge: Least-squares via QR decomposition
  125. Урок 125.00:12:53
    What are eigenvalues and eigenvectors?
  126. Урок 126.00:20:44
    Finding eigenvalues
  127. Урок 127.00:02:54
    Shortcut for eigenvalues of a 2x2 matrix
  128. Урок 128.00:14:25
    Code challenge: eigenvalues of diagonal and triangular matrices
  129. Урок 129.00:11:05
    Code challenge: eigenvalues of random matrices
  130. Урок 130.00:15:57
    Finding eigenvectors
  131. Урок 131.00:09:28
    Eigendecomposition by hand: two examples
  132. Урок 132.00:14:31
    Diagonalization
  133. Урок 133.00:20:37
    Matrix powers via diagonalization
  134. Урок 134.00:18:15
    Code challenge: eigendecomposition of matrix differences
  135. Урок 135.00:08:15
    Eigenvectors of distinct eigenvalues
  136. Урок 136.00:12:16
    Eigenvectors of repeated eigenvalues
  137. Урок 137.00:14:04
    Eigendecomposition of symmetric matrices
  138. Урок 138.00:07:20
    Eigenlayers of a matrix
  139. Урок 139.00:20:11
    Code challenge: reconstruct a matrix from eigenlayers
  140. Урок 140.00:05:00
    Eigendecomposition of singular matrices
  141. Урок 141.00:10:57
    Code challenge: trace and determinant, eigenvalues sum and product
  142. Урок 142.00:12:31
    Generalized eigendecomposition
  143. Урок 143.00:21:10
    Code challenge: GED in small and large matrices
  144. Урок 144.00:18:41
    Singular value decomposition (SVD)
  145. Урок 145.00:24:32
    Code challenge: SVD vs. eigendecomposition for square symmetric matrices
  146. Урок 146.00:13:04
    Relation between singular values and eigenvalues
  147. Урок 147.00:18:24
    Code challenge: U from eigendecomposition of A^TA
  148. Урок 148.00:14:34
    Code challenge: A^TA, Av, and singular vectors
  149. Урок 149.00:07:35
    SVD and the four subspaces
  150. Урок 150.00:21:57
    Spectral theory of matrices
  151. Урок 151.00:16:43
    SVD for low-rank approximations
  152. Урок 152.00:15:26
    Convert singular values to percent variance
  153. Урок 153.00:12:04
    Code challenge: When is UV^T valid, what is its norm, and is it orthogonal?
  154. Урок 154.00:13:30
    SVD, matrix inverse, and pseudoinverse
  155. Урок 155.00:12:48
    Condition number of a matrix
  156. Урок 156.00:15:09
    Code challenge: Create matrix with desired condition number
  157. Урок 157.00:15:28
    The quadratic form in algebra
  158. Урок 158.00:15:36
    The quadratic form in geometry
  159. Урок 159.00:06:36
    The normalized quadratic form
  160. Урок 160.00:16:21
    Code challenge: Visualize the normalized quadratic form
  161. Урок 161.00:06:18
    Eigenvectors and the quadratic form surface
  162. Урок 162.00:29:02
    Application of the normalized quadratic form: PCA
  163. Урок 163.00:17:34
    Quadratic form of generalized eigendecomposition
  164. Урок 164.00:12:55
    Matrix definiteness, geometry, and eigenvalues
  165. Урок 165.00:06:52
    Proof: A^TA is always positive (semi)definite
  166. Урок 166.00:07:16
    Proof: Eigenvalues and matrix definiteness