1. Урок 1.00:03:10
    Introduction
  2. Урок 2.00:07:56
    Course Overview
  3. Урок 3.00:18:58
    What is Spark? Why Python?
  4. Урок 4.00:05:59
    Set-up Overview
  5. Урок 5.00:11:26
    Local Installation VirtualBox Part 1
  6. Урок 6.00:14:00
    Local Installation VirtualBox Part 2
  7. Урок 7.00:05:46
    Setting up PySpark
  8. Урок 8.00:02:47
    AWS EC2 Set-up Guide
  9. Урок 9.00:16:19
    Creating the EC2 Instance
  10. Урок 10.00:04:50
    SSH with Mac or Linux
  11. Урок 11.00:15:06
    Installations on EC2
  12. Урок 12.00:11:42
    Databricks Setup
  13. Урок 13.00:17:17
    AWS EMR Setup
  14. Урок 14.00:01:34
    Introduction to Python Crash Course
  15. Урок 15.00:06:50
    Jupyter Notebook Overview
  16. Урок 16.00:16:09
    Python Crash Course Part One
  17. Урок 17.00:12:08
    Python Crash Course Part Two
  18. Урок 18.00:11:20
    Python Crash Course Part Three
  19. Урок 19.00:01:30
    Python Crash Course Exercises
  20. Урок 20.00:09:27
    Python Crash Course Exercise Solutions
  21. Урок 21.00:02:27
    Introduction to Spark DataFrames
  22. Урок 22.00:10:52
    Spark DataFrame Basics
  23. Урок 23.00:09:56
    Spark DataFrame Basics Part Two
  24. Урок 24.00:10:16
    Spark DataFrame Basic Operations
  25. Урок 25.00:12:28
    Groupby and Aggregate Operations
  26. Урок 26.00:08:57
    Missing Data
  27. Урок 27.00:10:05
    Dates and Timestamps
  28. Урок 28.00:03:14
    DataFrame Project Exercise
  29. Урок 29.00:16:54
    DataFrame Project Exercise Solutions
  30. Урок 30.00:10:22
    Introduction to Machine Learning and ISLR
  31. Урок 31.00:09:05
    Machine Learning with Spark and Python with MLlib
  32. Урок 32.00:05:04
    Linear Regression Theory and Reading
  33. Урок 33.00:14:20
    Linear Regression Documentation Example
  34. Урок 34.00:06:47
    Regression Evaluation
  35. Урок 35.00:15:14
    Linear Regression Example Code Along
  36. Урок 36.00:03:12
    Linear Regression Consulting Project
  37. Урок 37.00:15:33
    Linear Regression Consulting Project Solutions
  38. Урок 38.00:11:23
    Logistic Regression Theory and Reading
  39. Урок 39.00:15:40
    Logistic Regression Example Code Along
  40. Урок 40.00:18:37
    Logistic Regression Code Along
  41. Урок 41.00:03:14
    Logistic Regression Consulting Project
  42. Урок 42.00:11:14
    Logistic Regression Consulting Project Solutions
  43. Урок 43.00:08:01
    Tree Methods Theory and Reading
  44. Урок 44.00:13:19
    Tree Methods Documentation Examples
  45. Урок 45.00:20:38
    Decision Tress and Random Forest Code Along Examples
  46. Урок 46.00:02:34
    Random Forest - Classification Consulting Project
  47. Урок 47.00:08:01
    Random Forest Classification Consulting Project Solutions
  48. Урок 48.00:06:55
    K-means Clustering Theory and Reading
  49. Урок 49.00:09:52
    KMeans Clustering Documentation Example
  50. Урок 50.00:12:46
    Clustering Example Code Along
  51. Урок 51.00:03:10
    Clustering Consulting Project
  52. Урок 52.00:08:43
    Clustering Consulting Project Solutions
  53. Урок 53.00:06:33
    Introduction to Recommender Systems
  54. Урок 54.00:12:09
    Recommender System - Code Along Project
  55. Урок 55.00:08:03
    Introduction to Natural Language Processing
  56. Урок 56.00:16:13
    NLP Tools Part One
  57. Урок 57.00:08:06
    NLP Tools Part Two
  58. Урок 58.00:14:09
    Natural Language Processing Code Along Project
  59. Урок 59.00:10:20
    Introduction to Streaming with Spark!
  60. Урок 60.00:11:48
    Spark Streaming Documentation Example
  61. Урок 61.00:04:30
    Spark Streaming Twitter Project - Part
  62. Урок 62.00:13:09
    Spark Streaming Twitter Project - Part Two
  63. Урок 63.00:17:36
    Spark Streaming Twitter Project - Part Three