Этот материал находится в платной подписке. Оформи премиум подписку и смотри или слушай Become a Calculus 3 Master, а также все другие курсы, прямо сейчас!
Премиум
  1. Урок 1. 00:01:27
    Hi! START HERE: Course overview
  2. Урок 2. 00:10:48
    Plotting points in three dimensions
  3. Урок 3. 00:10:17
    Distance between points in three dimensions
  4. Урок 4. 00:09:59
    Center, radius, and equation of the sphere
  5. Урок 5. 00:05:07
    Describing a region in three-dimensional space
  6. Урок 6. 00:05:49
    Using inequalities to describe the region
  7. Урок 7. 00:18:01
    Sketching level curves of multivariable functions
  8. Урок 8. 00:06:43
    Vector and parametric equations of a line
  9. Урок 9. 00:08:39
    Parametric and symmetric equations of a line
  10. Урок 10. 00:02:59
    Symmetric equations of a line
  11. Урок 11. 00:10:33
    Parallel, intersecting, skew, and perpendicular lines
  12. Урок 12. 00:08:01
    Equation of a plane
  13. Урок 13. 00:04:14
    Intersection of a line and a plane
  14. Урок 14. 00:09:23
    Parallel, perpendicular and angle between planes
  15. Урок 15. 00:12:30
    Parametric equations for the line of intersection of two planes
  16. Урок 16. 00:10:44
    Symmetric equations for the line of intersection of two planes
  17. Урок 17. 00:08:47
    Distance between a point and a line
  18. Урок 18. 00:07:12
    Distance between a point and a plane
  19. Урок 19. 00:08:28
    Distance between parallel planes
  20. Урок 20. 00:15:03
    Reducing equations to standard form
  21. Урок 21. 00:08:00
    Sketching the surface
  22. Урок 22. 00:05:37
    Domain of a multivariable function
  23. Урок 23. 00:05:10
    Domain of a multivariable function, example 2
  24. Урок 24. 00:06:44
    Limit of a multivariable function
  25. Урок 25. 00:34:20
    Precise definition of the limit for multivariable functions
  26. Урок 26. 00:04:09
    Discontinuities of multivariable functions
  27. Урок 27. 00:09:09
    Compositions of multivariable functions
  28. Урок 28. 00:07:26
    Partial derivatives in two variables
  29. Урок 29. 00:05:57
    Partial derivatives in three or more variables
  30. Урок 30. 00:05:58
    Higher order partial derivatives
  31. Урок 31. 00:04:25
    Differential of a multivariable function
  32. Урок 32. 00:18:05
    Chain rule for multivariable functions
  33. Урок 33. 00:09:32
    Chain rule for multivariable functions, tree diagram
  34. Урок 34. 00:08:15
    Implicit differentiation for multivariable functions
  35. Урок 35. 00:05:55
    Directional derivatives in the direction of the vector
  36. Урок 36. 00:07:44
    Directional derivatives in the direction of the angle
  37. Урок 37. 00:06:36
    Linear approximation in two variables
  38. Урок 38. 00:06:46
    Linearization of a multivariable function
  39. Урок 39. 00:03:51
    Gradient vectors
  40. Урок 40. 00:04:28
    Gradient vectors and the tangent plane
  41. Урок 41. 00:05:58
    Maximum rate of change and its direction
  42. Урок 42. 00:05:23
    Equation of the tangent plane
  43. Урок 43. 00:11:16
    Normal line to the surface
  44. Урок 44. 00:05:25
    Critical points
  45. Урок 45. 00:08:53
    Second derivative test
  46. Урок 46. 00:11:19
    Local extrema and saddle points
  47. Урок 47. 00:06:55
    Global extrema
  48. Урок 48. 00:18:41
    Extreme value theorem
  49. Урок 49. 00:14:56
    Extreme value theorem, example 2
  50. Урок 50. 00:13:10
    Maximum product of three real numbers
  51. Урок 51. 00:15:22
    Maximum volume of a rectangular box inscribed in a sphere
  52. Урок 52. 00:04:40
    Minimum distance from the point to the plane
  53. Урок 53. 00:08:43
    Points on the cone closest to the given point
  54. Урок 54. 00:08:55
    Two dimensions, one constraint
  55. Урок 55. 00:16:07
    Two dimensions, one constraint, example 2
  56. Урок 56. 00:08:33
    Three dimensions, one constraint
  57. Урок 57. 00:14:54
    Three dimensions, two constraints
  58. Урок 58. 00:19:57
    Approximating double integrals with rectangles
  59. Урок 59. 00:09:16
    Midpoint rule for double integrals
  60. Урок 60. 00:08:33
    Riemann sums for double integrals
  61. Урок 61. 00:06:42
    Average value
  62. Урок 62. 00:23:30
    Iterated integrals
  63. Урок 63. 00:07:16
    Double integrals
  64. Урок 64. 00:12:02
    Type I and II regions
  65. Урок 65. 00:10:53
    Finding surface area
  66. Урок 66. 00:08:31
    Finding volume
  67. Урок 67. 00:17:25
    Changing the order of integration
  68. Урок 68. 00:10:34
    Changing iterated integrals to polar coordinates
  69. Урок 69. 00:12:34
    Changing double integrals to polar coordinates
  70. Урок 70. 00:05:36
    Sketching area
  71. Урок 71. 00:12:02
    Finding area
  72. Урок 72. 00:12:17
    Finding volume
  73. Урок 73. 00:11:54
    Double integrals to find mass and center of mass
  74. Урок 74. 00:11:50
    Midpoint rule for triple integrals
  75. Урок 75. 00:10:29
    Iterated integrals
  76. Урок 76. 00:13:35
    Triple integrals
  77. Урок 77. 00:06:31
    Average value
  78. Урок 78. 00:13:58
    Finding volume
  79. Урок 79. 00:17:29
    Expressing the integral six ways
  80. Урок 80. 00:03:56
    Cylindrical coordinates
  81. Урок 81. 00:13:48
    Changing triple integrals to cylindrical coordinates
  82. Урок 82. 00:12:15
    Finding volume
  83. Урок 83. 00:05:24
    Spherical coordinates
  84. Урок 84. 00:17:57
    Changing triple integrals to spherical coordinates
  85. Урок 85. 00:05:48
    Finding volume
  86. Урок 86. 00:06:01
    Jacobian for two variables
  87. Урок 87. 00:10:32
    Jacobian for three variables
  88. Урок 88. 00:10:39
    Triple integrals to find mass and center of mass
  89. Урок 89. 00:08:04
    Moments of inertia
  90. Урок 90. 00:05:04
    Vector from two points
  91. Урок 91. 00:07:44
    Combinations of vectors
  92. Урок 92. 00:05:32
    Sum of two vectors
  93. Урок 93. 00:09:38
    Copying vectors and using them to find combinations
  94. Урок 94. 00:05:29
    Unit vector in the direction of the given vector
  95. Урок 95. 00:08:05
    Angle between a vector and the x-axis
  96. Урок 96. 00:12:54
    Magnitude and angle of the resultant force
  97. Урок 97. 00:03:23
    Dot product of two vectors
  98. Урок 98. 00:05:22
    Angle between two vectors
  99. Урок 99. 00:00:00
    Orthogonal, parallel or neither
  100. Урок 100. 00:08:53
    Acute angle between the lines
  101. Урок 101. 00:16:59
    Acute angles between the curves
  102. Урок 102. 00:08:32
    Direction cosines and direction angles
  103. Урок 103. 00:02:57
    Scalar equation of a line
  104. Урок 104. 00:03:50
    Scalar equation of a plane
  105. Урок 105. 00:07:34
    Scalar and vector projections
  106. Урок 106. 00:05:39
    Cross product of two vectors
  107. Урок 107. 00:09:04
    Vector orthogonal to the plane
  108. Урок 108. 00:06:58
    Volume of the parallelepiped from vectors
  109. Урок 109. 00:08:13
    Volume of the parallelepiped from adjacent edges
  110. Урок 110. 00:08:53
    Scalar triple product to prove vectors are coplanar
  111. Урок 111. 00:05:11
    Domain of a vector function
  112. Урок 112. 00:05:53
    Limit of a vector function
  113. Урок 113. 00:10:57
    Sketching the vector equation
  114. Урок 114. 00:16:29
    Projections of the curve
  115. Урок 115. 00:05:01
    Vector and parametric equations of a line segment
  116. Урок 116. 00:05:38
    Vector function for the curve of intersection of two surfaces
  117. Урок 117. 00:07:59
    Derivative of a vector function
  118. Урок 118. 00:06:24
    Unit tangent vector
  119. Урок 119. 00:08:18
    Parametric equations of the tangent line
  120. Урок 120. 00:09:01
    Integral of a vector function
  121. Урок 121. 00:09:40
    Arc length of a vector function
  122. Урок 122. 00:00:00
    Reparametrizing the curve
  123. Урок 123. 00:08:50
    Unit tangent and unit normal vectors
  124. Урок 124. 00:00:00
    Curvature
  125. Урок 125. 00:13:08
    Maximum curvature
  126. Урок 126. 00:23:23
    Normal and osculating planes
  127. Урок 127. 00:05:39
    Velocity and acceleration vectors
  128. Урок 128. 00:04:55
    Velocity, acceleration and speed, given position
  129. Урок 129. 00:00:00
    Velocity and position given acceleration and initial conditions
  130. Урок 130. 00:00:00
    Tangential and normal components of acceleration
  131. Урок 131. 00:16:30
    Line integral of a curve
  132. Урок 132. 00:10:39
    Line integral of a vector function
  133. Урок 133. 00:12:58
    Potential function of a conservative vector field
  134. Урок 134. 00:00:00
    Potential function of a conservative vector field to evaluate a line integral
  135. Урок 135. 00:00:00
    Independence of path
  136. Урок 136. 00:13:01
    Work done by the force field
  137. Урок 137. 00:07:42
    Open, connected, and simply-connected
  138. Урок 138. 00:00:00
    Green's theorem for one region
  139. Урок 139. 00:13:25
    Green's theorem for two regions
  140. Урок 140. 00:00:00
    Curl and divergence of a vector field
  141. Урок 141. 00:17:34
    Potential function of a conservative vector field, three dimensions
  142. Урок 142. 00:00:00
    Points on the surface
  143. Урок 143. 00:10:22
    Surface of the vector equation
  144. Урок 144. 00:00:00
    Parametric representation of the surface
  145. Урок 145. 00:00:00
    Tangent plane to the parametric surface
  146. Урок 146. 00:10:51
    Area of a surface
  147. Урок 147. 00:08:25
    Surface integrals
  148. Урок 148. 00:14:09
    Surface integrals, example 2
  149. Урок 149. 00:19:20
    Stokes' theorem
  150. Урок 150. 00:00:00
    Divergence theorem
  151. Урок 151. 00:07:23
    Separable differential equations
  152. Урок 152. 00:04:52
    Change of variable for separable differential equations
  153. Урок 153. 00:06:01
    Separable differential equations initial value problems
  154. Урок 154. 00:05:35
    Population growth
  155. Урок 155. 00:13:23
    Predator-prey systems
  156. Урок 156. 00:16:40
    Exact differential equations
  157. Урок 157. 00:08:49
    Linear differential equations
  158. Урок 158. 00:09:53
    Linear differential equations initial value problems
  159. Урок 159. 00:04:46
    Homogeneous distinct real roots
  160. Урок 160. 00:04:33
    Homogeneous equal real roots
  161. Урок 161. 00:08:16
    Homogeneous complex conjugate roots
  162. Урок 162. 00:09:00
    Homogeneous initial value problems
  163. Урок 163. 00:00:00
    Homogeneous initial value problems, example 2
  164. Урок 164. 00:00:00
    Homogeneous initial value problems, example 3
  165. Урок 165. 00:13:41
    Homogeneous initial value problems, example 4
  166. Урок 166. 00:15:22
    Undetermined coefficients
  167. Урок 167. 00:18:45
    Variation of parameters, system of equations
  168. Урок 168. 00:13:41
    Nonhomogeneous initial value problems
  169. Урок 169. 00:00:00
    Laplace transforms using the table
  170. Урок 170. 00:14:33
    Laplace transforms using the definition
  171. Урок 171. 00:17:03
    Laplace transforms and initial value problems
  172. Урок 172. 00:11:14
    Inverse Laplace transforms
  173. Урок 173. 00:00:21
    Wrap-up