• Урок 1. 00:01:27
    Hi! START HERE: Course overview
  • Урок 2. 00:10:48
    Plotting points in three dimensions
  • Урок 3. 00:10:17
    Distance between points in three dimensions
  • Урок 4. 00:09:59
    Center, radius, and equation of the sphere
  • Урок 5. 00:05:07
    Describing a region in three-dimensional space
  • Урок 6. 00:05:49
    Using inequalities to describe the region
  • Урок 7. 00:18:01
    Sketching level curves of multivariable functions
  • Урок 8. 00:06:43
    Vector and parametric equations of a line
  • Урок 9. 00:08:39
    Parametric and symmetric equations of a line
  • Урок 10. 00:02:59
    Symmetric equations of a line
  • Урок 11. 00:10:33
    Parallel, intersecting, skew, and perpendicular lines
  • Урок 12. 00:08:01
    Equation of a plane
  • Урок 13. 00:04:14
    Intersection of a line and a plane
  • Урок 14. 00:09:23
    Parallel, perpendicular and angle between planes
  • Урок 15. 00:12:30
    Parametric equations for the line of intersection of two planes
  • Урок 16. 00:10:44
    Symmetric equations for the line of intersection of two planes
  • Урок 17. 00:08:47
    Distance between a point and a line
  • Урок 18. 00:07:12
    Distance between a point and a plane
  • Урок 19. 00:08:28
    Distance between parallel planes
  • Урок 20. 00:15:03
    Reducing equations to standard form
  • Урок 21. 00:08:00
    Sketching the surface
  • Урок 22. 00:05:37
    Domain of a multivariable function
  • Урок 23. 00:05:10
    Domain of a multivariable function, example 2
  • Урок 24. 00:06:44
    Limit of a multivariable function
  • Урок 25. 00:34:20
    Precise definition of the limit for multivariable functions
  • Урок 26. 00:04:09
    Discontinuities of multivariable functions
  • Урок 27. 00:09:09
    Compositions of multivariable functions
  • Урок 28. 00:07:26
    Partial derivatives in two variables
  • Урок 29. 00:05:57
    Partial derivatives in three or more variables
  • Урок 30. 00:05:58
    Higher order partial derivatives
  • Урок 31. 00:04:25
    Differential of a multivariable function
  • Урок 32. 00:18:05
    Chain rule for multivariable functions
  • Урок 33. 00:09:32
    Chain rule for multivariable functions, tree diagram
  • Урок 34. 00:08:15
    Implicit differentiation for multivariable functions
  • Урок 35. 00:05:55
    Directional derivatives in the direction of the vector
  • Урок 36. 00:07:44
    Directional derivatives in the direction of the angle
  • Урок 37. 00:06:36
    Linear approximation in two variables
  • Урок 38. 00:06:46
    Linearization of a multivariable function
  • Урок 39. 00:03:51
    Gradient vectors
  • Урок 40. 00:04:28
    Gradient vectors and the tangent plane
  • Урок 41. 00:05:58
    Maximum rate of change and its direction
  • Урок 42. 00:05:23
    Equation of the tangent plane
  • Урок 43. 00:11:16
    Normal line to the surface
  • Урок 44. 00:05:25
    Critical points
  • Урок 45. 00:08:53
    Second derivative test
  • Урок 46. 00:11:19
    Local extrema and saddle points
  • Урок 47. 00:06:55
    Global extrema
  • Урок 48. 00:18:41
    Extreme value theorem
  • Урок 49. 00:14:56
    Extreme value theorem, example 2
  • Урок 50. 00:13:10
    Maximum product of three real numbers
  • Урок 51. 00:15:22
    Maximum volume of a rectangular box inscribed in a sphere
  • Урок 52. 00:04:40
    Minimum distance from the point to the plane
  • Урок 53. 00:08:43
    Points on the cone closest to the given point
  • Урок 54. 00:08:55
    Two dimensions, one constraint
  • Урок 55. 00:16:07
    Two dimensions, one constraint, example 2
  • Урок 56. 00:08:33
    Three dimensions, one constraint
  • Урок 57. 00:14:54
    Three dimensions, two constraints
  • Урок 58. 00:19:57
    Approximating double integrals with rectangles
  • Урок 59. 00:09:16
    Midpoint rule for double integrals
  • Урок 60. 00:08:33
    Riemann sums for double integrals
  • Урок 61. 00:06:42
    Average value
  • Урок 62. 00:23:30
    Iterated integrals
  • Урок 63. 00:07:16
    Double integrals
  • Урок 64. 00:12:02
    Type I and II regions
  • Урок 65. 00:10:53
    Finding surface area
  • Урок 66. 00:08:31
    Finding volume
  • Урок 67. 00:17:25
    Changing the order of integration
  • Урок 68. 00:10:34
    Changing iterated integrals to polar coordinates
  • Урок 69. 00:12:34
    Changing double integrals to polar coordinates
  • Урок 70. 00:05:36
    Sketching area
  • Урок 71. 00:12:02
    Finding area
  • Урок 72. 00:12:17
    Finding volume
  • Урок 73. 00:11:54
    Double integrals to find mass and center of mass
  • Урок 74. 00:11:50
    Midpoint rule for triple integrals
  • Урок 75. 00:10:29
    Iterated integrals
  • Урок 76. 00:13:35
    Triple integrals
  • Урок 77. 00:06:31
    Average value
  • Урок 78. 00:13:58
    Finding volume
  • Урок 79. 00:17:29
    Expressing the integral six ways
  • Урок 80. 00:03:56
    Cylindrical coordinates
  • Урок 81. 00:13:48
    Changing triple integrals to cylindrical coordinates
  • Урок 82. 00:12:15
    Finding volume
  • Урок 83. 00:05:24
    Spherical coordinates
  • Урок 84. 00:17:57
    Changing triple integrals to spherical coordinates
  • Урок 85. 00:05:48
    Finding volume
  • Урок 86. 00:06:01
    Jacobian for two variables
  • Урок 87. 00:10:32
    Jacobian for three variables
  • Урок 88. 00:10:39
    Triple integrals to find mass and center of mass
  • Урок 89. 00:08:04
    Moments of inertia
  • Урок 90. 00:05:04
    Vector from two points
  • Урок 91. 00:07:44
    Combinations of vectors
  • Урок 92. 00:05:32
    Sum of two vectors
  • Урок 93. 00:09:38
    Copying vectors and using them to find combinations
  • Урок 94. 00:05:29
    Unit vector in the direction of the given vector
  • Урок 95. 00:08:05
    Angle between a vector and the x-axis
  • Урок 96. 00:12:54
    Magnitude and angle of the resultant force
  • Урок 97. 00:03:23
    Dot product of two vectors
  • Урок 98. 00:05:22
    Angle between two vectors
  • Урок 99. 00:00:00
    Orthogonal, parallel or neither
  • Урок 100. 00:08:53
    Acute angle between the lines
  • Урок 101. 00:16:59
    Acute angles between the curves
  • Урок 102. 00:08:32
    Direction cosines and direction angles
  • Урок 103. 00:02:57
    Scalar equation of a line
  • Урок 104. 00:03:50
    Scalar equation of a plane
  • Урок 105. 00:07:34
    Scalar and vector projections
  • Урок 106. 00:05:39
    Cross product of two vectors
  • Урок 107. 00:09:04
    Vector orthogonal to the plane
  • Урок 108. 00:06:58
    Volume of the parallelepiped from vectors
  • Урок 109. 00:08:13
    Volume of the parallelepiped from adjacent edges
  • Урок 110. 00:08:53
    Scalar triple product to prove vectors are coplanar
  • Урок 111. 00:05:11
    Domain of a vector function
  • Урок 112. 00:05:53
    Limit of a vector function
  • Урок 113. 00:10:57
    Sketching the vector equation
  • Урок 114. 00:16:29
    Projections of the curve
  • Урок 115. 00:05:01
    Vector and parametric equations of a line segment
  • Урок 116. 00:05:38
    Vector function for the curve of intersection of two surfaces
  • Урок 117. 00:07:59
    Derivative of a vector function
  • Урок 118. 00:06:24
    Unit tangent vector
  • Урок 119. 00:08:18
    Parametric equations of the tangent line
  • Урок 120. 00:09:01
    Integral of a vector function
  • Урок 121. 00:09:40
    Arc length of a vector function
  • Урок 122. 00:00:00
    Reparametrizing the curve
  • Урок 123. 00:08:50
    Unit tangent and unit normal vectors
  • Урок 124. 00:00:00
    Curvature
  • Урок 125. 00:13:08
    Maximum curvature
  • Урок 126. 00:23:23
    Normal and osculating planes
  • Урок 127. 00:05:39
    Velocity and acceleration vectors
  • Урок 128. 00:04:55
    Velocity, acceleration and speed, given position
  • Урок 129. 00:00:00
    Velocity and position given acceleration and initial conditions
  • Урок 130. 00:00:00
    Tangential and normal components of acceleration
  • Урок 131. 00:16:30
    Line integral of a curve
  • Урок 132. 00:10:39
    Line integral of a vector function
  • Урок 133. 00:12:58
    Potential function of a conservative vector field
  • Урок 134. 00:00:00
    Potential function of a conservative vector field to evaluate a line integral
  • Урок 135. 00:00:00
    Independence of path
  • Урок 136. 00:13:01
    Work done by the force field
  • Урок 137. 00:07:42
    Open, connected, and simply-connected
  • Урок 138. 00:00:00
    Green's theorem for one region
  • Урок 139. 00:13:25
    Green's theorem for two regions
  • Урок 140. 00:00:00
    Curl and divergence of a vector field
  • Урок 141. 00:17:34
    Potential function of a conservative vector field, three dimensions
  • Урок 142. 00:00:00
    Points on the surface
  • Урок 143. 00:10:22
    Surface of the vector equation
  • Урок 144. 00:00:00
    Parametric representation of the surface
  • Урок 145. 00:00:00
    Tangent plane to the parametric surface
  • Урок 146. 00:10:51
    Area of a surface
  • Урок 147. 00:08:25
    Surface integrals
  • Урок 148. 00:14:09
    Surface integrals, example 2
  • Урок 149. 00:19:20
    Stokes' theorem
  • Урок 150. 00:00:00
    Divergence theorem
  • Урок 151. 00:07:23
    Separable differential equations
  • Урок 152. 00:04:52
    Change of variable for separable differential equations
  • Урок 153. 00:06:01
    Separable differential equations initial value problems
  • Урок 154. 00:05:35
    Population growth
  • Урок 155. 00:13:23
    Predator-prey systems
  • Урок 156. 00:16:40
    Exact differential equations
  • Урок 157. 00:08:49
    Linear differential equations
  • Урок 158. 00:09:53
    Linear differential equations initial value problems
  • Урок 159. 00:04:46
    Homogeneous distinct real roots
  • Урок 160. 00:04:33
    Homogeneous equal real roots
  • Урок 161. 00:08:16
    Homogeneous complex conjugate roots
  • Урок 162. 00:09:00
    Homogeneous initial value problems
  • Урок 163. 00:00:00
    Homogeneous initial value problems, example 2
  • Урок 164. 00:00:00
    Homogeneous initial value problems, example 3
  • Урок 165. 00:13:41
    Homogeneous initial value problems, example 4
  • Урок 166. 00:15:22
    Undetermined coefficients
  • Урок 167. 00:18:45
    Variation of parameters, system of equations
  • Урок 168. 00:13:41
    Nonhomogeneous initial value problems
  • Урок 169. 00:00:00
    Laplace transforms using the table
  • Урок 170. 00:14:33
    Laplace transforms using the definition
  • Урок 171. 00:17:03
    Laplace transforms and initial value problems
  • Урок 172. 00:11:14
    Inverse Laplace transforms
  • Урок 173. 00:00:21
    Wrap-up
Этот материал находится в платной подписке. Оформи премиум подписку и смотри Become a Calculus 3 Master, а также все другие курсы, прямо сейчас!
Премиум