-
Урок 1.
00:01:27
Hi! START HERE: Course overview
-
Урок 2.
00:10:48
Plotting points in three dimensions
-
Урок 3.
00:10:17
Distance between points in three dimensions
-
Урок 4.
00:09:59
Center, radius, and equation of the sphere
-
Урок 5.
00:05:07
Describing a region in three-dimensional space
-
Урок 6.
00:05:49
Using inequalities to describe the region
-
Урок 7.
00:18:01
Sketching level curves of multivariable functions
-
Урок 8.
00:06:43
Vector and parametric equations of a line
-
Урок 9.
00:08:39
Parametric and symmetric equations of a line
-
Урок 10.
00:02:59
Symmetric equations of a line
-
Урок 11.
00:10:33
Parallel, intersecting, skew, and perpendicular lines
-
Урок 12.
00:08:01
Equation of a plane
-
Урок 13.
00:04:14
Intersection of a line and a plane
-
Урок 14.
00:09:23
Parallel, perpendicular and angle between planes
-
Урок 15.
00:12:30
Parametric equations for the line of intersection of two planes
-
Урок 16.
00:10:44
Symmetric equations for the line of intersection of two planes
-
Урок 17.
00:08:47
Distance between a point and a line
-
Урок 18.
00:07:12
Distance between a point and a plane
-
Урок 19.
00:08:28
Distance between parallel planes
-
Урок 20.
00:15:03
Reducing equations to standard form
-
Урок 21.
00:08:00
Sketching the surface
-
Урок 22.
00:05:37
Domain of a multivariable function
-
Урок 23.
00:05:10
Domain of a multivariable function, example 2
-
Урок 24.
00:06:44
Limit of a multivariable function
-
Урок 25.
00:34:20
Precise definition of the limit for multivariable functions
-
Урок 26.
00:04:09
Discontinuities of multivariable functions
-
Урок 27.
00:09:09
Compositions of multivariable functions
-
Урок 28.
00:07:26
Partial derivatives in two variables
-
Урок 29.
00:05:57
Partial derivatives in three or more variables
-
Урок 30.
00:05:58
Higher order partial derivatives
-
Урок 31.
00:04:25
Differential of a multivariable function
-
Урок 32.
00:18:05
Chain rule for multivariable functions
-
Урок 33.
00:09:32
Chain rule for multivariable functions, tree diagram
-
Урок 34.
00:08:15
Implicit differentiation for multivariable functions
-
Урок 35.
00:05:55
Directional derivatives in the direction of the vector
-
Урок 36.
00:07:44
Directional derivatives in the direction of the angle
-
Урок 37.
00:06:36
Linear approximation in two variables
-
Урок 38.
00:06:46
Linearization of a multivariable function
-
Урок 39.
00:03:51
Gradient vectors
-
Урок 40.
00:04:28
Gradient vectors and the tangent plane
-
Урок 41.
00:05:58
Maximum rate of change and its direction
-
Урок 42.
00:05:23
Equation of the tangent plane
-
Урок 43.
00:11:16
Normal line to the surface
-
Урок 44.
00:05:25
Critical points
-
Урок 45.
00:08:53
Second derivative test
-
Урок 46.
00:11:19
Local extrema and saddle points
-
Урок 47.
00:06:55
Global extrema
-
Урок 48.
00:18:41
Extreme value theorem
-
Урок 49.
00:14:56
Extreme value theorem, example 2
-
Урок 50.
00:13:10
Maximum product of three real numbers
-
Урок 51.
00:15:22
Maximum volume of a rectangular box inscribed in a sphere
-
Урок 52.
00:04:40
Minimum distance from the point to the plane
-
Урок 53.
00:08:43
Points on the cone closest to the given point
-
Урок 54.
00:08:55
Two dimensions, one constraint
-
Урок 55.
00:16:07
Two dimensions, one constraint, example 2
-
Урок 56.
00:08:33
Three dimensions, one constraint
-
Урок 57.
00:14:54
Three dimensions, two constraints
-
Урок 58.
00:19:57
Approximating double integrals with rectangles
-
Урок 59.
00:09:16
Midpoint rule for double integrals
-
Урок 60.
00:08:33
Riemann sums for double integrals
-
Урок 61.
00:06:42
Average value
-
Урок 62.
00:23:30
Iterated integrals
-
Урок 63.
00:07:16
Double integrals
-
Урок 64.
00:12:02
Type I and II regions
-
Урок 65.
00:10:53
Finding surface area
-
Урок 66.
00:08:31
Finding volume
-
Урок 67.
00:17:25
Changing the order of integration
-
Урок 68.
00:10:34
Changing iterated integrals to polar coordinates
-
Урок 69.
00:12:34
Changing double integrals to polar coordinates
-
Урок 70.
00:05:36
Sketching area
-
Урок 71.
00:12:02
Finding area
-
Урок 72.
00:12:17
Finding volume
-
Урок 73.
00:11:54
Double integrals to find mass and center of mass
-
Урок 74.
00:11:50
Midpoint rule for triple integrals
-
Урок 75.
00:10:29
Iterated integrals
-
Урок 76.
00:13:35
Triple integrals
-
Урок 77.
00:06:31
Average value
-
Урок 78.
00:13:58
Finding volume
-
Урок 79.
00:17:29
Expressing the integral six ways
-
Урок 80.
00:03:56
Cylindrical coordinates
-
Урок 81.
00:13:48
Changing triple integrals to cylindrical coordinates
-
Урок 82.
00:12:15
Finding volume
-
Урок 83.
00:05:24
Spherical coordinates
-
Урок 84.
00:17:57
Changing triple integrals to spherical coordinates
-
Урок 85.
00:05:48
Finding volume
-
Урок 86.
00:06:01
Jacobian for two variables
-
Урок 87.
00:10:32
Jacobian for three variables
-
Урок 88.
00:10:39
Triple integrals to find mass and center of mass
-
Урок 89.
00:08:04
Moments of inertia
-
Урок 90.
00:05:04
Vector from two points
-
Урок 91.
00:07:44
Combinations of vectors
-
Урок 92.
00:05:32
Sum of two vectors
-
Урок 93.
00:09:38
Copying vectors and using them to find combinations
-
Урок 94.
00:05:29
Unit vector in the direction of the given vector
-
Урок 95.
00:08:05
Angle between a vector and the x-axis
-
Урок 96.
00:12:54
Magnitude and angle of the resultant force
-
Урок 97.
00:03:23
Dot product of two vectors
-
Урок 98.
00:05:22
Angle between two vectors
-
Урок 99.
00:00:00
Orthogonal, parallel or neither
-
Урок 100.
00:08:53
Acute angle between the lines
-
Урок 101.
00:16:59
Acute angles between the curves
-
Урок 102.
00:08:32
Direction cosines and direction angles
-
Урок 103.
00:02:57
Scalar equation of a line
-
Урок 104.
00:03:50
Scalar equation of a plane
-
Урок 105.
00:07:34
Scalar and vector projections
-
Урок 106.
00:05:39
Cross product of two vectors
-
Урок 107.
00:09:04
Vector orthogonal to the plane
-
Урок 108.
00:06:58
Volume of the parallelepiped from vectors
-
Урок 109.
00:08:13
Volume of the parallelepiped from adjacent edges
-
Урок 110.
00:08:53
Scalar triple product to prove vectors are coplanar
-
Урок 111.
00:05:11
Domain of a vector function
-
Урок 112.
00:05:53
Limit of a vector function
-
Урок 113.
00:10:57
Sketching the vector equation
-
Урок 114.
00:16:29
Projections of the curve
-
Урок 115.
00:05:01
Vector and parametric equations of a line segment
-
Урок 116.
00:05:38
Vector function for the curve of intersection of two surfaces
-
Урок 117.
00:07:59
Derivative of a vector function
-
Урок 118.
00:06:24
Unit tangent vector
-
Урок 119.
00:08:18
Parametric equations of the tangent line
-
Урок 120.
00:09:01
Integral of a vector function
-
Урок 121.
00:09:40
Arc length of a vector function
-
Урок 122.
00:00:00
Reparametrizing the curve
-
Урок 123.
00:08:50
Unit tangent and unit normal vectors
-
Урок 124.
00:00:00
Curvature
-
Урок 125.
00:13:08
Maximum curvature
-
Урок 126.
00:23:23
Normal and osculating planes
-
Урок 127.
00:05:39
Velocity and acceleration vectors
-
Урок 128.
00:04:55
Velocity, acceleration and speed, given position
-
Урок 129.
00:00:00
Velocity and position given acceleration and initial conditions
-
Урок 130.
00:00:00
Tangential and normal components of acceleration
-
Урок 131.
00:16:30
Line integral of a curve
-
Урок 132.
00:10:39
Line integral of a vector function
-
Урок 133.
00:12:58
Potential function of a conservative vector field
-
Урок 134.
00:00:00
Potential function of a conservative vector field to evaluate a line integral
-
Урок 135.
00:00:00
Independence of path
-
Урок 136.
00:13:01
Work done by the force field
-
Урок 137.
00:07:42
Open, connected, and simply-connected
-
Урок 138.
00:00:00
Green's theorem for one region
-
Урок 139.
00:13:25
Green's theorem for two regions
-
Урок 140.
00:00:00
Curl and divergence of a vector field
-
Урок 141.
00:17:34
Potential function of a conservative vector field, three dimensions
-
Урок 142.
00:00:00
Points on the surface
-
Урок 143.
00:10:22
Surface of the vector equation
-
Урок 144.
00:00:00
Parametric representation of the surface
-
Урок 145.
00:00:00
Tangent plane to the parametric surface
-
Урок 146.
00:10:51
Area of a surface
-
Урок 147.
00:08:25
Surface integrals
-
Урок 148.
00:14:09
Surface integrals, example 2
-
Урок 149.
00:19:20
Stokes' theorem
-
Урок 150.
00:00:00
Divergence theorem
-
Урок 151.
00:07:23
Separable differential equations
-
Урок 152.
00:04:52
Change of variable for separable differential equations
-
Урок 153.
00:06:01
Separable differential equations initial value problems
-
Урок 154.
00:05:35
Population growth
-
Урок 155.
00:13:23
Predator-prey systems
-
Урок 156.
00:16:40
Exact differential equations
-
Урок 157.
00:08:49
Linear differential equations
-
Урок 158.
00:09:53
Linear differential equations initial value problems
-
Урок 159.
00:04:46
Homogeneous distinct real roots
-
Урок 160.
00:04:33
Homogeneous equal real roots
-
Урок 161.
00:08:16
Homogeneous complex conjugate roots
-
Урок 162.
00:09:00
Homogeneous initial value problems
-
Урок 163.
00:00:00
Homogeneous initial value problems, example 2
-
Урок 164.
00:00:00
Homogeneous initial value problems, example 3
-
Урок 165.
00:13:41
Homogeneous initial value problems, example 4
-
Урок 166.
00:15:22
Undetermined coefficients
-
Урок 167.
00:18:45
Variation of parameters, system of equations
-
Урок 168.
00:13:41
Nonhomogeneous initial value problems
-
Урок 169.
00:00:00
Laplace transforms using the table
-
Урок 170.
00:14:33
Laplace transforms using the definition
-
Урок 171.
00:17:03
Laplace transforms and initial value problems
-
Урок 172.
00:11:14
Inverse Laplace transforms
-
Урок 173.
00:00:21
Wrap-up
Обновите пожалуйста этот курс
Видосы старые