-
Урок 1.
00:04:18
COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP!
-
Урок 2.
00:13:50
Anaconda Python and Jupyter Install and Setup
-
Урок 3.
00:09:09
Environment Setup
-
Урок 4.
00:16:08
Python Crash Course - Part One
-
Урок 5.
00:12:08
Python Crash Course - Part Two
-
Урок 6.
00:11:20
Python Crash Course - Part Three
-
Урок 7.
00:01:30
Python Crash Course - Exercise Questions
-
Урок 8.
00:09:27
Python Crash Course - Exercise Solutions
-
Урок 9.
00:10:17
Machine Learning Pathway
-
Урок 10.
00:02:15
Introduction to NumPy
-
Урок 11.
00:22:42
NumPy Arrays
-
Урок 12.
00:11:07
NumPy Indexing and Selection
-
Урок 13.
00:08:15
NumPy Operations
-
Урок 14.
00:01:19
NumPy Exercises
-
Урок 15.
00:07:06
Numpy Exercises - Solutions
-
Урок 16.
00:04:41
Introduction to Pandas
-
Урок 17.
00:09:29
Series - Part One
-
Урок 18.
00:10:42
Series - Part Two
-
Урок 19.
00:19:28
DataFrames - Part One - Creating a DataFrame
-
Урок 20.
00:08:19
DataFrames - Part Two - Basic Properties
-
Урок 21.
00:13:58
DataFrames - Part Three - Working with Columns
-
Урок 22.
00:14:31
DataFrames - Part Four - Working with Rows
-
Урок 23.
00:17:42
Pandas - Conditional Filtering
-
Урок 24.
00:13:48
Pandas - Useful Methods - Apply on Single Column
-
Урок 25.
00:17:24
Pandas - Useful Methods - Apply on Multiple Columns
-
Урок 26.
00:15:49
Pandas - Useful Methods - Statistical Information and Sorting
-
Урок 27.
00:12:00
Missing Data - Overview
-
Урок 28.
00:18:33
Missing Data - Pandas Operations
-
Урок 29.
00:15:50
GroupBy Operations - Part One
-
Урок 30.
00:14:19
GroupBy Operations - Part Two - MultiIndex
-
Урок 31.
00:10:25
Combining DataFrames - Concatenation
-
Урок 32.
00:12:05
Combining DataFrames - Inner Merge
-
Урок 33.
00:06:08
Combining DataFrames - Left and Right Merge
-
Урок 34.
00:10:39
Combining DataFrames - Outer Merge
-
Урок 35.
00:16:06
Pandas - Text Methods for String Data
-
Урок 36.
00:21:01
Pandas - Time Methods for Date and Time Data
-
Урок 37.
00:10:21
Pandas Input and Output - CSV Files
-
Урок 38.
00:14:42
Pandas Input and Output - HTML Tables
-
Урок 39.
00:07:21
Pandas Input and Output - Excel Files
-
Урок 40.
00:18:20
Pandas Input and Output - SQL Databases
-
Урок 41.
00:21:16
Pandas Pivot Tables
-
Урок 42.
00:05:27
Pandas Project Exercise Overview
-
Урок 43.
00:26:32
Pandas Project Exercise Solutions
-
Урок 44.
00:04:07
Introduction to Matplotlib
-
Урок 45.
00:12:36
Matplotlib Basics
-
Урок 46.
00:07:33
Matplotlib - Understanding the Figure Object
-
Урок 47.
00:14:32
Matplotlib - Implementing Figures and Axes
-
Урок 48.
00:04:57
Matplotlib - Figure Parameters
-
Урок 49.
00:19:18
Matplotlib - Subplots Functionality
-
Урок 50.
00:07:03
Matplotlib Styling - Legends
-
Урок 51.
00:14:30
Matplotlib Styling - Colors and Styles
-
Урок 52.
00:03:53
Advanced Matplotlib Commands (Optional)
-
Урок 53.
00:06:11
Matplotlib Exercise Questions Overview
-
Урок 54.
00:16:40
Matplotlib Exercise Questions - Solutions
-
Урок 55.
00:03:55
Introduction to Seaborn
-
Урок 56.
00:18:20
Scatterplots with Seaborn
-
Урок 57.
00:09:36
Distribution Plots - Part One - Understanding Plot Types
-
Урок 58.
00:16:15
Distribution Plots - Part Two - Coding with Seaborn
-
Урок 59.
00:05:41
Categorical Plots - Statistics within Categories - Understanding Plot Types
-
Урок 60.
00:09:16
Categorical Plots - Statistics within Categories - Coding with Seaborn
-
Урок 61.
00:13:21
Categorical Plots - Distributions within Categories - Understanding Plot Types
-
Урок 62.
00:17:58
Categorical Plots - Distributions within Categories - Coding with Seaborn
-
Урок 63.
00:05:33
Seaborn - Comparison Plots - Understanding the Plot Types
-
Урок 64.
00:09:48
Seaborn - Comparison Plots - Coding with Seaborn
-
Урок 65.
00:13:40
Seaborn Grid Plots
-
Урок 66.
00:13:19
Seaborn - Matrix Plots
-
Урок 67.
00:06:45
Seaborn Plot Exercises Overview
-
Урок 68.
00:14:34
Seaborn Plot Exercises Solutions
-
Урок 69.
00:12:49
Capstone Project Overview
-
Урок 70.
00:17:16
Capstone Project Solutions - Part One
-
Урок 71.
00:14:51
Capstone Project Solutions - Part Two
-
Урок 72.
00:19:50
Capstone Project Solutions - Part Three
-
Урок 73.
00:05:14
Introduction to Machine Learning Overview Section
-
Урок 74.
00:09:16
Why Machine Learning?
-
Урок 75.
00:07:48
Types of Machine Learning Algorithms
-
Урок 76.
00:13:42
Supervised Machine Learning Process
-
Урок 77.
00:02:53
Companion Book - Introduction to Statistical Learning
-
Урок 78.
00:01:40
Introduction to Linear Regression Section
-
Урок 79.
00:09:23
Linear Regression - Algorithm History
-
Урок 80.
00:15:44
Linear Regression - Understanding Ordinary Least Squares
-
Урок 81.
00:08:13
Linear Regression - Cost Functions
-
Урок 82.
00:12:00
Linear Regression - Gradient Descent
-
Урок 83.
00:19:38
Python coding Simple Linear Regression
-
Урок 84.
00:08:27
Overview of Scikit-Learn and Python
-
Урок 85.
00:15:49
Linear Regression - Scikit-Learn Train Test Split
-
Урок 86.
00:15:45
Linear Regression - Scikit-Learn Performance Evaluation - Regression
-
Урок 87.
00:13:58
Linear Regression - Residual Plots
-
Урок 88.
00:17:47
Linear Regression - Model Deployment and Coefficient Interpretation
-
Урок 89.
00:08:00
Polynomial Regression - Theory and Motivation
-
Урок 90.
00:10:55
Polynomial Regression - Creating Polynomial Features
-
Урок 91.
00:09:45
Polynomial Regression - Training and Evaluation
-
Урок 92.
00:10:35
Bias Variance Trade-Off
-
Урок 93.
00:13:38
Polynomial Regression - Choosing Degree of Polynomial
-
Урок 94.
00:06:08
Polynomial Regression - Model Deployment
-
Урок 95.
00:06:40
Regularization Overview
-
Урок 96.
00:10:00
Feature Scaling
-
Урок 97.
00:12:54
Introduction to Cross Validation
-
Урок 98.
00:08:38
Regularization Data Setup
-
Урок 99.
00:14:30
L2 Regularization - Ridge Regression Theory
-
Урок 100.
00:17:43
L2 Regularization - Ridge Regression - Python Implementation
-
Урок 101.
00:15:03
L1 Regularization - Lasso Regression - Background and Implementation
-
Урок 102.
00:18:08
L1 and L2 Regularization - Elastic Net
-
Урок 103.
00:04:31
Linear Regression Project - Data Overview
-
Урок 104.
00:15:29
Introduction to Feature Engineering and Data Preparation
-
Урок 105.
00:26:34
Dealing with Outliers
-
Урок 106.
00:10:43
Dealing with Missing Data : Part One - Evaluation of Missing Data
-
Урок 107.
00:20:41
Dealing with Missing Data : Part Two - Filling or Dropping data based on Rows
-
Урок 108.
00:23:17
Dealing with Missing Data : Part 3 - Fixing data based on Columns
-
Урок 109.
00:12:48
Dealing with Categorical Data - Encoding Options
-
Урок 110.
00:03:15
Section Overview and Introduction
-
Урок 111.
00:11:21
Cross Validation - Test | Train Split
-
Урок 112.
00:14:49
Cross Validation - Test | Validation | Train Split
-
Урок 113.
00:11:38
Cross Validation - cross_val_score
-
Урок 114.
00:06:57
Cross Validation - cross_validate
-
Урок 115.
00:12:15
Grid Search
-
Урок 116.
00:03:27
Linear Regression Project Overview
-
Урок 117.
00:12:11
Linear Regression Project - Solutions
-
Урок 118.
00:05:28
Introduction to Logistic Regression Section
-
Урок 119.
00:05:37
Logistic Regression - Theory and Intuition - Part One: The Logistic Function
-
Урок 120.
00:04:55
Logistic Regression - Theory and Intuition - Part Two: Linear to Logistic
-
Урок 121.
00:17:01
Logistic Regression - Theory and Intuition - Linear to Logistic Math
-
Урок 122.
00:15:43
Logistic Regression - Theory and Intuition - Best fit with Maximum Likelihood
-
Урок 123.
00:13:58
Logistic Regression with Scikit-Learn - Part One - EDA
-
Урок 124.
00:06:39
Logistic Regression with Scikit-Learn - Part Two - Model Training
-
Урок 125.
00:09:46
Classification Metrics - Confusion Matrix and Accuracy
-
Урок 126.
00:06:01
Classification Metrics - Precison, Recall, F1-Score
-
Урок 127.
00:07:14
Classification Metrics - ROC Curves
-
Урок 128.
00:15:57
Logistic Regression with Scikit-Learn - Part Three - Performance Evaluation
-
Урок 129.
00:08:08
Multi-Class Classification with Logistic Regression - Part One - Data and EDA
-
Урок 130.
00:15:48
Multi-Class Classification with Logistic Regression - Part Two - Model
-
Урок 131.
00:04:00
Logistic Regression Exercise Project Overview
-
Урок 132.
00:21:37
Logistic Regression Project Exercise - Solutions
-
Урок 133.
00:02:12
Introduction to KNN Section
-
Урок 134.
00:11:19
KNN Classification - Theory and Intuition
-
Урок 135.
00:13:41
KNN Coding with Python - Part One
-
Урок 136.
00:23:26
KNN Coding with Python - Part Two - Choosing K
-
Урок 137.
00:03:19
KNN Classification Project Exercise Overview
-
Урок 138.
00:14:13
KNN Classification Project Exercise Solutions
-
Урок 139.
00:01:30
Introduction to Support Vector Machines
-
Урок 140.
00:04:42
History of Support Vector Machines
-
Урок 141.
00:13:26
SVM - Theory and Intuition - Hyperplanes and Margins
-
Урок 142.
00:04:58
SVM - Theory and Intuition - Kernel Intuition
-
Урок 143.
00:20:51
SVM - Theory and Intuition - Kernel Trick and Mathematics
-
Урок 144.
00:11:00
SVM with Scikit-Learn and Python - Classification Part One
-
Урок 145.
00:16:03
SVM with Scikit-Learn and Python - Classification Part Two
-
Урок 146.
00:21:00
SVM with Scikit-Learn and Python - Regression Tasks
-
Урок 147.
00:04:28
Support Vector Machine Project Overview
-
Урок 148.
00:18:32
Support Vector Machine Project Solutions
-
Урок 149.
00:01:23
Introduction to Tree Based Methods
-
Урок 150.
00:09:05
Decision Tree - History
-
Урок 151.
00:04:13
Decision Tree - Terminology
-
Урок 152.
00:07:53
Decision Tree - Understanding Gini Impurity
-
Урок 153.
00:07:33
Constructing Decision Trees with Gini Impurity - Part One
-
Урок 154.
00:11:25
Constructing Decision Trees with Gini Impurity - Part Two
-
Урок 155.
00:19:19
Coding Decision Trees - Part One - The Data
-
Урок 156.
00:20:57
Coding Decision Trees - Part Two -Creating the Model
-
Урок 157.
00:01:47
Introduction to Random Forests Section
-
Урок 158.
00:11:39
Random Forests - History and Motivation
-
Урок 159.
00:03:00
Random Forests - Key Hyperparameters
-
Урок 160.
00:10:57
Random Forests - Number of Estimators and Features in Subsets
-
Урок 161.
00:12:47
Random Forests - Bootstrapping and Out-of-Bag Error
-
Урок 162.
00:11:37
Coding Classification with Random Forest Classifier - Part One
-
Урок 163.
00:22:23
Coding Classification with Random Forest Classifier - Part Two
-
Урок 164.
00:04:29
Coding Regression with Random Forest Regressor - Part One - Data
-
Урок 165.
00:13:34
Coding Regression with Random Forest Regressor - Part Two - Basic Models
-
Урок 166.
00:10:31
Coding Regression with Random Forest Regressor - Part Three - Polynomials
-
Урок 167.
00:10:37
Coding Regression with Random Forest Regressor - Part Four - Advanced Models
-
Урок 168.
00:01:48
Introduction to Boosting Section
-
Урок 169.
00:06:12
Boosting Methods - Motivation and History
-
Урок 170.
00:19:52
AdaBoost Theory and Intuition
-
Урок 171.
00:11:14
AdaBoost Coding Part One - The Data
-
Урок 172.
00:18:10
AdaBoost Coding Part Two - The Model
-
Урок 173.
00:10:23
Gradient Boosting Theory
-
Урок 174.
00:12:49
Gradient Boosting Coding Walkthrough
-
Урок 175.
00:14:24
Introduction to Supervised Learning Capstone Project
-
Урок 176.
00:18:19
Solution Walkthrough - Supervised Learning Project - Data and EDA
-
Урок 177.
00:23:10
Solution Walkthrough - Supervised Learning Project - Cohort Analysis
-
Урок 178.
00:21:24
Solution Walkthrough - Supervised Learning Project - Tree Models
-
Урок 179.
00:02:37
Introduction to NLP and Naive Bayes Section
-
Урок 180.
00:08:05
Naive Bayes Algorithm - Part One - Bayes Theorem
-
Урок 181.
00:17:56
Naive Bayes Algorithm - Part Two - Model Algorithm
-
Урок 182.
00:10:34
Feature Extraction from Text - Part One - Theory and Intuition
-
Урок 183.
00:18:54
Feature Extraction from Text - Coding Count Vectorization Manually
-
Урок 184.
00:11:25
Feature Extraction from Text - Coding with Scikit-Learn
-
Урок 185.
00:11:24
Natural Language Processing - Classification of Text - Part One
-
Урок 186.
00:10:19
Natural Language Processing - Classification of Text - Part Two
-
Урок 187.
00:04:38
Text Classification Project Exercise Overview
-
Урок 188.
00:15:38
Text Classification Project Exercise Solutions
-
Урок 189.
00:08:18
Unsupervised Learning Overview
-
Урок 190.
00:02:15
Introduction to K-Means Clustering Section
-
Урок 191.
00:10:37
Clustering General Overview
-
Урок 192.
00:11:31
K-Means Clustering Theory
-
Урок 193.
00:19:49
K-Means Clustering - Coding Part One
-
Урок 194.
00:17:19
K-Means Clustering Coding Part Two
-
Урок 195.
00:14:33
K-Means Clustering Coding Part Three
-
Урок 196.
00:13:54
K-Means Color Quantization - Part One
-
Урок 197.
00:14:34
K-Means Color Quantization - Part Two
-
Урок 198.
00:07:48
K-Means Clustering Exercise Overview
-
Урок 199.
00:13:11
K-Means Clustering Exercise Solution - Part One
-
Урок 200.
00:15:52
K-Means Clustering Exercise Solution - Part Two
-
Урок 201.
00:08:21
K-Means Clustering Exercise Solution - Part Three
-
Урок 202.
00:00:51
Introduction to Hierarchical Clustering
-
Урок 203.
00:11:49
Hierarchical Clustering - Theory and Intuition
-
Урок 204.
00:16:13
Hierarchical Clustering - Coding Part One - Data and Visualization
-
Урок 205.
00:28:23
Hierarchical Clustering - Coding Part Two - Scikit-Learn
-
Урок 206.
00:01:01
Introduction to DBSCAN Section
-
Урок 207.
00:17:27
DBSCAN - Theory and Intuition
-
Урок 208.
00:12:24
DBSCAN versus K-Means Clustering
-
Урок 209.
00:07:16
DBSCAN - Hyperparameter Theory
-
Урок 210.
00:21:56
DBSCAN - Hyperparameter Tuning Methods
-
Урок 211.
00:05:56
DBSCAN - Outlier Project Exercise Overview
-
Урок 212.
00:23:21
DBSCAN - Outlier Project Exercise Solutions
-
Урок 213.
00:02:48
Introduction to Principal Component Analysis
-
Урок 214.
00:10:25
PCA Theory and Intuition - Part One
-
Урок 215.
00:11:13
PCA Theory and Intuition - Part Two
-
Урок 216.
00:18:17
PCA - Manual Implementation in Python
-
Урок 217.
00:12:10
PCA - SciKit-Learn
-
Урок 218.
00:07:22
PCA - Project Exercise Overview
-
Урок 219.
00:17:04
PCA - Project Exercise Solution
-
Урок 220.
00:02:20
Model Deployment Section Overview
-
Урок 221.
00:06:52
Model Deployment Considerations
-
Урок 222.
00:21:08
Model Persistence
-
Урок 223.
00:07:42
Model Deployment as an API - General Overview
-
Урок 224.
00:17:01
Model API - Creating the Script
-
Урок 225.
00:07:50
Testing the API