Урок 1. 00:04:18
COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP!
Урок 2. 00:13:50
Anaconda Python and Jupyter Install and Setup
Урок 3. 00:09:09
Environment Setup
Урок 4. 00:16:08
Python Crash Course - Part One
Урок 5. 00:12:08
Python Crash Course - Part Two
Урок 6. 00:11:20
Python Crash Course - Part Three
Урок 7. 00:01:30
Python Crash Course - Exercise Questions
Урок 8. 00:09:27
Python Crash Course - Exercise Solutions
Урок 9. 00:10:17
Machine Learning Pathway
Урок 10. 00:02:15
Introduction to NumPy
Урок 11. 00:22:42
NumPy Arrays
Урок 12. 00:11:07
NumPy Indexing and Selection
Урок 13. 00:08:15
NumPy Operations
Урок 14. 00:01:19
NumPy Exercises
Урок 15. 00:07:06
Numpy Exercises - Solutions
Урок 16. 00:04:41
Introduction to Pandas
Урок 17. 00:09:29
Series - Part One
Урок 18. 00:10:42
Series - Part Two
Урок 19. 00:19:28
DataFrames - Part One - Creating a DataFrame
Урок 20. 00:08:19
DataFrames - Part Two - Basic Properties
Урок 21. 00:13:58
DataFrames - Part Three - Working with Columns
Урок 22. 00:14:31
DataFrames - Part Four - Working with Rows
Урок 23. 00:17:42
Pandas - Conditional Filtering
Урок 24. 00:13:48
Pandas - Useful Methods - Apply on Single Column
Урок 25. 00:17:24
Pandas - Useful Methods - Apply on Multiple Columns
Урок 26. 00:15:49
Pandas - Useful Methods - Statistical Information and Sorting
Урок 27. 00:12:00
Missing Data - Overview
Урок 28. 00:18:33
Missing Data - Pandas Operations
Урок 29. 00:15:50
GroupBy Operations - Part One
Урок 30. 00:14:19
GroupBy Operations - Part Two - MultiIndex
Урок 31. 00:10:25
Combining DataFrames - Concatenation
Урок 32. 00:12:05
Combining DataFrames - Inner Merge
Урок 33. 00:06:08
Combining DataFrames - Left and Right Merge
Урок 34. 00:10:39
Combining DataFrames - Outer Merge
Урок 35. 00:16:06
Pandas - Text Methods for String Data
Урок 36. 00:21:01
Pandas - Time Methods for Date and Time Data
Урок 37. 00:10:21
Pandas Input and Output - CSV Files
Урок 38. 00:14:42
Pandas Input and Output - HTML Tables
Урок 39. 00:07:21
Pandas Input and Output - Excel Files
Урок 40. 00:18:20
Pandas Input and Output - SQL Databases
Урок 41. 00:21:16
Pandas Pivot Tables
Урок 42. 00:05:27
Pandas Project Exercise Overview
Урок 43. 00:26:32
Pandas Project Exercise Solutions
Урок 44. 00:04:07
Introduction to Matplotlib
Урок 45. 00:12:36
Matplotlib Basics
Урок 46. 00:07:33
Matplotlib - Understanding the Figure Object
Урок 47. 00:14:32
Matplotlib - Implementing Figures and Axes
Урок 48. 00:04:57
Matplotlib - Figure Parameters
Урок 49. 00:19:18
Matplotlib - Subplots Functionality
Урок 50. 00:07:03
Matplotlib Styling - Legends
Урок 51. 00:14:30
Matplotlib Styling - Colors and Styles
Урок 52. 00:03:53
Advanced Matplotlib Commands (Optional)
Урок 53. 00:06:11
Matplotlib Exercise Questions Overview
Урок 54. 00:16:40
Matplotlib Exercise Questions - Solutions
Урок 55. 00:03:55
Introduction to Seaborn
Урок 56. 00:18:20
Scatterplots with Seaborn
Урок 57. 00:09:36
Distribution Plots - Part One - Understanding Plot Types
Урок 58. 00:16:15
Distribution Plots - Part Two - Coding with Seaborn
Урок 59. 00:05:41
Categorical Plots - Statistics within Categories - Understanding Plot Types
Урок 60. 00:09:16
Categorical Plots - Statistics within Categories - Coding with Seaborn
Урок 61. 00:13:21
Categorical Plots - Distributions within Categories - Understanding Plot Types
Урок 62. 00:17:58
Categorical Plots - Distributions within Categories - Coding with Seaborn
Урок 63. 00:05:33
Seaborn - Comparison Plots - Understanding the Plot Types
Урок 64. 00:09:48
Seaborn - Comparison Plots - Coding with Seaborn
Урок 65. 00:13:40
Seaborn Grid Plots
Урок 66. 00:13:19
Seaborn - Matrix Plots
Урок 67. 00:06:45
Seaborn Plot Exercises Overview
Урок 68. 00:14:34
Seaborn Plot Exercises Solutions
Урок 69. 00:12:49
Capstone Project Overview
Урок 70. 00:17:16
Capstone Project Solutions - Part One
Урок 71. 00:14:51
Capstone Project Solutions - Part Two
Урок 72. 00:19:50
Capstone Project Solutions - Part Three
Урок 73. 00:05:14
Introduction to Machine Learning Overview Section
Урок 74. 00:09:16
Why Machine Learning?
Урок 75. 00:07:48
Types of Machine Learning Algorithms
Урок 76. 00:13:42
Supervised Machine Learning Process
Урок 77. 00:02:53
Companion Book - Introduction to Statistical Learning
Урок 78. 00:01:40
Introduction to Linear Regression Section
Урок 79. 00:09:23
Linear Regression - Algorithm History
Урок 80. 00:15:44
Linear Regression - Understanding Ordinary Least Squares
Урок 81. 00:08:13
Linear Regression - Cost Functions
Урок 82. 00:12:00
Linear Regression - Gradient Descent
Урок 83. 00:19:38
Python coding Simple Linear Regression
Урок 84. 00:08:27
Overview of Scikit-Learn and Python
Урок 85. 00:15:49
Linear Regression - Scikit-Learn Train Test Split
Урок 86. 00:15:45
Linear Regression - Scikit-Learn Performance Evaluation - Regression
Урок 87. 00:13:58
Linear Regression - Residual Plots
Урок 88. 00:17:47
Linear Regression - Model Deployment and Coefficient Interpretation
Урок 89. 00:08:00
Polynomial Regression - Theory and Motivation
Урок 90. 00:10:55
Polynomial Regression - Creating Polynomial Features
Урок 91. 00:09:45
Polynomial Regression - Training and Evaluation
Урок 92. 00:10:35
Bias Variance Trade-Off
Урок 93. 00:13:38
Polynomial Regression - Choosing Degree of Polynomial
Урок 94. 00:06:08
Polynomial Regression - Model Deployment
Урок 95. 00:06:40
Regularization Overview
Урок 96. 00:10:00
Feature Scaling
Урок 97. 00:12:54
Introduction to Cross Validation
Урок 98. 00:08:38
Regularization Data Setup
Урок 99. 00:14:30
L2 Regularization - Ridge Regression Theory
Урок 100. 00:17:43
L2 Regularization - Ridge Regression - Python Implementation
Урок 101. 00:15:03
L1 Regularization - Lasso Regression - Background and Implementation
Урок 102. 00:18:08
L1 and L2 Regularization - Elastic Net
Урок 103. 00:04:31
Linear Regression Project - Data Overview
Урок 104. 00:15:29
Introduction to Feature Engineering and Data Preparation
Урок 105. 00:26:34
Dealing with Outliers
Урок 106. 00:10:43
Dealing with Missing Data : Part One - Evaluation of Missing Data
Урок 107. 00:20:41
Dealing with Missing Data : Part Two - Filling or Dropping data based on Rows
Урок 108. 00:23:17
Dealing with Missing Data : Part 3 - Fixing data based on Columns
Урок 109. 00:12:48
Dealing with Categorical Data - Encoding Options
Урок 110. 00:03:15
Section Overview and Introduction
Урок 111. 00:11:21
Cross Validation - Test | Train Split
Урок 112. 00:14:49
Cross Validation - Test | Validation | Train Split
Урок 113. 00:11:38
Cross Validation - cross_val_score
Урок 114. 00:06:57
Cross Validation - cross_validate
Урок 115. 00:12:15
Grid Search
Урок 116. 00:03:27
Linear Regression Project Overview
Урок 117. 00:12:11
Linear Regression Project - Solutions
Урок 118. 00:05:28
Introduction to Logistic Regression Section
Урок 119. 00:05:37
Logistic Regression - Theory and Intuition - Part One: The Logistic Function
Урок 120. 00:04:55
Logistic Regression - Theory and Intuition - Part Two: Linear to Logistic
Урок 121. 00:17:01
Logistic Regression - Theory and Intuition - Linear to Logistic Math
Урок 122. 00:15:43
Logistic Regression - Theory and Intuition - Best fit with Maximum Likelihood
Урок 123. 00:13:58
Logistic Regression with Scikit-Learn - Part One - EDA
Урок 124. 00:06:39
Logistic Regression with Scikit-Learn - Part Two - Model Training
Урок 125. 00:09:46
Classification Metrics - Confusion Matrix and Accuracy
Урок 126. 00:06:01
Classification Metrics - Precison, Recall, F1-Score
Урок 127. 00:07:14
Classification Metrics - ROC Curves
Урок 128. 00:15:57
Logistic Regression with Scikit-Learn - Part Three - Performance Evaluation
Урок 129. 00:08:08
Multi-Class Classification with Logistic Regression - Part One - Data and EDA
Урок 130. 00:15:48
Multi-Class Classification with Logistic Regression - Part Two - Model
Урок 131. 00:04:00
Logistic Regression Exercise Project Overview
Урок 132. 00:21:37
Logistic Regression Project Exercise - Solutions
Урок 133. 00:02:12
Introduction to KNN Section
Урок 134. 00:11:19
KNN Classification - Theory and Intuition
Урок 135. 00:13:41
KNN Coding with Python - Part One
Урок 136. 00:23:26
KNN Coding with Python - Part Two - Choosing K
Урок 137. 00:03:19
KNN Classification Project Exercise Overview
Урок 138. 00:14:13
KNN Classification Project Exercise Solutions
Урок 139. 00:01:30
Introduction to Support Vector Machines
Урок 140. 00:04:42
History of Support Vector Machines
Урок 141. 00:13:26
SVM - Theory and Intuition - Hyperplanes and Margins
Урок 142. 00:04:58
SVM - Theory and Intuition - Kernel Intuition
Урок 143. 00:20:51
SVM - Theory and Intuition - Kernel Trick and Mathematics
Урок 144. 00:11:00
SVM with Scikit-Learn and Python - Classification Part One
Урок 145. 00:16:03
SVM with Scikit-Learn and Python - Classification Part Two
Урок 146. 00:21:00
SVM with Scikit-Learn and Python - Regression Tasks
Урок 147. 00:04:28
Support Vector Machine Project Overview
Урок 148. 00:18:32
Support Vector Machine Project Solutions
Урок 149. 00:01:23
Introduction to Tree Based Methods
Урок 150. 00:09:05
Decision Tree - History
Урок 151. 00:04:13
Decision Tree - Terminology
Урок 152. 00:07:53
Decision Tree - Understanding Gini Impurity
Урок 153. 00:07:33
Constructing Decision Trees with Gini Impurity - Part One
Урок 154. 00:11:25
Constructing Decision Trees with Gini Impurity - Part Two
Урок 155. 00:19:19
Coding Decision Trees - Part One - The Data
Урок 156. 00:20:57
Coding Decision Trees - Part Two -Creating the Model
Урок 157. 00:01:47
Introduction to Random Forests Section
Урок 158. 00:11:39
Random Forests - History and Motivation
Урок 159. 00:03:00
Random Forests - Key Hyperparameters
Урок 160. 00:10:57
Random Forests - Number of Estimators and Features in Subsets
Урок 161. 00:12:47
Random Forests - Bootstrapping and Out-of-Bag Error
Урок 162. 00:11:37
Coding Classification with Random Forest Classifier - Part One
Урок 163. 00:22:23
Coding Classification with Random Forest Classifier - Part Two
Урок 164. 00:04:29
Coding Regression with Random Forest Regressor - Part One - Data
Урок 165. 00:13:34
Coding Regression with Random Forest Regressor - Part Two - Basic Models
Урок 166. 00:10:31
Coding Regression with Random Forest Regressor - Part Three - Polynomials
Урок 167. 00:10:37
Coding Regression with Random Forest Regressor - Part Four - Advanced Models
Урок 168. 00:01:48
Introduction to Boosting Section
Урок 169. 00:06:12
Boosting Methods - Motivation and History
Урок 170. 00:19:52
AdaBoost Theory and Intuition
Урок 171. 00:11:14
AdaBoost Coding Part One - The Data
Урок 172. 00:18:10
AdaBoost Coding Part Two - The Model
Урок 173. 00:10:23
Gradient Boosting Theory
Урок 174. 00:12:49
Gradient Boosting Coding Walkthrough
Урок 175. 00:14:24
Introduction to Supervised Learning Capstone Project
Урок 176. 00:18:19
Solution Walkthrough - Supervised Learning Project - Data and EDA
Урок 177. 00:23:10
Solution Walkthrough - Supervised Learning Project - Cohort Analysis
Урок 178. 00:21:24
Solution Walkthrough - Supervised Learning Project - Tree Models
Урок 179. 00:02:37
Introduction to NLP and Naive Bayes Section
Урок 180. 00:08:05
Naive Bayes Algorithm - Part One - Bayes Theorem
Урок 181. 00:17:56
Naive Bayes Algorithm - Part Two - Model Algorithm
Урок 182. 00:10:34
Feature Extraction from Text - Part One - Theory and Intuition
Урок 183. 00:18:54
Feature Extraction from Text - Coding Count Vectorization Manually
Урок 184. 00:11:25
Feature Extraction from Text - Coding with Scikit-Learn
Урок 185. 00:11:24
Natural Language Processing - Classification of Text - Part One
Урок 186. 00:10:19
Natural Language Processing - Classification of Text - Part Two
Урок 187. 00:04:38
Text Classification Project Exercise Overview
Урок 188. 00:15:38
Text Classification Project Exercise Solutions
Урок 189. 00:08:18
Unsupervised Learning Overview
Урок 190. 00:02:15
Introduction to K-Means Clustering Section
Урок 191. 00:10:37
Clustering General Overview
Урок 192. 00:11:31
K-Means Clustering Theory
Урок 193. 00:19:49
K-Means Clustering - Coding Part One
Урок 194. 00:17:19
K-Means Clustering Coding Part Two
Урок 195. 00:14:33
K-Means Clustering Coding Part Three
Урок 196. 00:13:54
K-Means Color Quantization - Part One
Урок 197. 00:14:34
K-Means Color Quantization - Part Two
Урок 198. 00:07:48
K-Means Clustering Exercise Overview
Урок 199. 00:13:11
K-Means Clustering Exercise Solution - Part One
Урок 200. 00:15:52
K-Means Clustering Exercise Solution - Part Two
Урок 201. 00:08:21
K-Means Clustering Exercise Solution - Part Three
Урок 202. 00:00:51
Introduction to Hierarchical Clustering
Урок 203. 00:11:49
Hierarchical Clustering - Theory and Intuition
Урок 204. 00:16:13
Hierarchical Clustering - Coding Part One - Data and Visualization
Урок 205. 00:28:23
Hierarchical Clustering - Coding Part Two - Scikit-Learn
Урок 206. 00:01:01
Introduction to DBSCAN Section
Урок 207. 00:17:27
DBSCAN - Theory and Intuition
Урок 208. 00:12:24
DBSCAN versus K-Means Clustering
Урок 209. 00:07:16
DBSCAN - Hyperparameter Theory
Урок 210. 00:21:56
DBSCAN - Hyperparameter Tuning Methods
Урок 211. 00:05:56
DBSCAN - Outlier Project Exercise Overview
Урок 212. 00:23:21
DBSCAN - Outlier Project Exercise Solutions
Урок 213. 00:02:48
Introduction to Principal Component Analysis
Урок 214. 00:10:25
PCA Theory and Intuition - Part One
Урок 215. 00:11:13
PCA Theory and Intuition - Part Two
Урок 216. 00:18:17
PCA - Manual Implementation in Python
Урок 217. 00:12:10
PCA - SciKit-Learn
Урок 218. 00:07:22
PCA - Project Exercise Overview
Урок 219. 00:17:04
PCA - Project Exercise Solution
Урок 220. 00:02:20
Model Deployment Section Overview
Урок 221. 00:06:52
Model Deployment Considerations
Урок 222. 00:21:08
Model Persistence
Урок 223. 00:07:42
Model Deployment as an API - General Overview
Урок 224. 00:17:01
Model API - Creating the Script
Урок 225. 00:07:50
Testing the API