Урок 1.
00:04:18
COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP!
Урок 2.
00:13:50
Anaconda Python and Jupyter Install and Setup
Урок 3.
00:09:09
Environment Setup
Урок 4.
00:16:08
Python Crash Course - Part One
Урок 5.
00:12:08
Python Crash Course - Part Two
Урок 6.
00:11:20
Python Crash Course - Part Three
Урок 7.
00:01:30
Python Crash Course - Exercise Questions
Урок 8.
00:09:27
Python Crash Course - Exercise Solutions
Урок 9.
00:10:17
Machine Learning Pathway
Урок 10.
00:02:15
Introduction to NumPy
Урок 11.
00:22:42
NumPy Arrays
Урок 12.
00:11:07
NumPy Indexing and Selection
Урок 13.
00:08:15
NumPy Operations
Урок 14.
00:01:19
NumPy Exercises
Урок 15.
00:07:06
Numpy Exercises - Solutions
Урок 16.
00:04:41
Introduction to Pandas
Урок 17.
00:09:29
Series - Part One
Урок 18.
00:10:42
Series - Part Two
Урок 19.
00:19:28
DataFrames - Part One - Creating a DataFrame
Урок 20.
00:08:19
DataFrames - Part Two - Basic Properties
Урок 21.
00:13:58
DataFrames - Part Three - Working with Columns
Урок 22.
00:14:31
DataFrames - Part Four - Working with Rows
Урок 23.
00:17:42
Pandas - Conditional Filtering
Урок 24.
00:13:48
Pandas - Useful Methods - Apply on Single Column
Урок 25.
00:17:24
Pandas - Useful Methods - Apply on Multiple Columns
Урок 26.
00:15:49
Pandas - Useful Methods - Statistical Information and Sorting
Урок 27.
00:12:00
Missing Data - Overview
Урок 28.
00:18:33
Missing Data - Pandas Operations
Урок 29.
00:15:50
GroupBy Operations - Part One
Урок 30.
00:14:19
GroupBy Operations - Part Two - MultiIndex
Урок 31.
00:10:25
Combining DataFrames - Concatenation
Урок 32.
00:12:05
Combining DataFrames - Inner Merge
Урок 33.
00:06:08
Combining DataFrames - Left and Right Merge
Урок 34.
00:10:39
Combining DataFrames - Outer Merge
Урок 35.
00:16:06
Pandas - Text Methods for String Data
Урок 36.
00:21:01
Pandas - Time Methods for Date and Time Data
Урок 37.
00:10:21
Pandas Input and Output - CSV Files
Урок 38.
00:14:42
Pandas Input and Output - HTML Tables
Урок 39.
00:07:21
Pandas Input and Output - Excel Files
Урок 40.
00:18:20
Pandas Input and Output - SQL Databases
Урок 41.
00:21:16
Pandas Pivot Tables
Урок 42.
00:05:27
Pandas Project Exercise Overview
Урок 43.
00:26:32
Pandas Project Exercise Solutions
Урок 44.
00:04:07
Introduction to Matplotlib
Урок 45.
00:12:36
Matplotlib Basics
Урок 46.
00:07:33
Matplotlib - Understanding the Figure Object
Урок 47.
00:14:32
Matplotlib - Implementing Figures and Axes
Урок 48.
00:04:57
Matplotlib - Figure Parameters
Урок 49.
00:19:18
Matplotlib - Subplots Functionality
Урок 50.
00:07:03
Matplotlib Styling - Legends
Урок 51.
00:14:30
Matplotlib Styling - Colors and Styles
Урок 52.
00:03:53
Advanced Matplotlib Commands (Optional)
Урок 53.
00:06:11
Matplotlib Exercise Questions Overview
Урок 54.
00:16:40
Matplotlib Exercise Questions - Solutions
Урок 55.
00:03:55
Introduction to Seaborn
Урок 56.
00:18:20
Scatterplots with Seaborn
Урок 57.
00:09:36
Distribution Plots - Part One - Understanding Plot Types
Урок 58.
00:16:15
Distribution Plots - Part Two - Coding with Seaborn
Урок 59.
00:05:41
Categorical Plots - Statistics within Categories - Understanding Plot Types
Урок 60.
00:09:16
Categorical Plots - Statistics within Categories - Coding with Seaborn
Урок 61.
00:13:21
Categorical Plots - Distributions within Categories - Understanding Plot Types
Урок 62.
00:17:58
Categorical Plots - Distributions within Categories - Coding with Seaborn
Урок 63.
00:05:33
Seaborn - Comparison Plots - Understanding the Plot Types
Урок 64.
00:09:48
Seaborn - Comparison Plots - Coding with Seaborn
Урок 65.
00:13:40
Seaborn Grid Plots
Урок 66.
00:13:19
Seaborn - Matrix Plots
Урок 67.
00:06:45
Seaborn Plot Exercises Overview
Урок 68.
00:14:34
Seaborn Plot Exercises Solutions
Урок 69.
00:12:49
Capstone Project Overview
Урок 70.
00:17:16
Capstone Project Solutions - Part One
Урок 71.
00:14:51
Capstone Project Solutions - Part Two
Урок 72.
00:19:50
Capstone Project Solutions - Part Three
Урок 73.
00:05:14
Introduction to Machine Learning Overview Section
Урок 74.
00:09:16
Why Machine Learning?
Урок 75.
00:07:48
Types of Machine Learning Algorithms
Урок 76.
00:13:42
Supervised Machine Learning Process
Урок 77.
00:02:53
Companion Book - Introduction to Statistical Learning
Урок 78.
00:01:40
Introduction to Linear Regression Section
Урок 79.
00:09:23
Linear Regression - Algorithm History
Урок 80.
00:15:44
Linear Regression - Understanding Ordinary Least Squares
Урок 81.
00:08:13
Linear Regression - Cost Functions
Урок 82.
00:12:00
Linear Regression - Gradient Descent
Урок 83.
00:19:38
Python coding Simple Linear Regression
Урок 84.
00:08:27
Overview of Scikit-Learn and Python
Урок 85.
00:15:49
Linear Regression - Scikit-Learn Train Test Split
Урок 86.
00:15:45
Linear Regression - Scikit-Learn Performance Evaluation - Regression
Урок 87.
00:13:58
Linear Regression - Residual Plots
Урок 88.
00:17:47
Linear Regression - Model Deployment and Coefficient Interpretation
Урок 89.
00:08:00
Polynomial Regression - Theory and Motivation
Урок 90.
00:10:55
Polynomial Regression - Creating Polynomial Features
Урок 91.
00:09:45
Polynomial Regression - Training and Evaluation
Урок 92.
00:10:35
Bias Variance Trade-Off
Урок 93.
00:13:38
Polynomial Regression - Choosing Degree of Polynomial
Урок 94.
00:06:08
Polynomial Regression - Model Deployment
Урок 95.
00:06:40
Regularization Overview
Урок 96.
00:10:00
Feature Scaling
Урок 97.
00:12:54
Introduction to Cross Validation
Урок 98.
00:08:38
Regularization Data Setup
Урок 99.
00:14:30
L2 Regularization - Ridge Regression Theory
Урок 100.
00:17:43
L2 Regularization - Ridge Regression - Python Implementation
Урок 101.
00:15:03
L1 Regularization - Lasso Regression - Background and Implementation
Урок 102.
00:18:08
L1 and L2 Regularization - Elastic Net
Урок 103.
00:04:31
Linear Regression Project - Data Overview
Урок 104.
00:15:29
Introduction to Feature Engineering and Data Preparation
Урок 105.
00:26:34
Dealing with Outliers
Урок 106.
00:10:43
Dealing with Missing Data : Part One - Evaluation of Missing Data
Урок 107.
00:20:41
Dealing with Missing Data : Part Two - Filling or Dropping data based on Rows
Урок 108.
00:23:17
Dealing with Missing Data : Part 3 - Fixing data based on Columns
Урок 109.
00:12:48
Dealing with Categorical Data - Encoding Options
Урок 110.
00:03:15
Section Overview and Introduction
Урок 111.
00:11:21
Cross Validation - Test | Train Split
Урок 112.
00:14:49
Cross Validation - Test | Validation | Train Split
Урок 113.
00:11:38
Cross Validation - cross_val_score
Урок 114.
00:06:57
Cross Validation - cross_validate
Урок 115.
00:12:15
Grid Search
Урок 116.
00:03:27
Linear Regression Project Overview
Урок 117.
00:12:11
Linear Regression Project - Solutions
Урок 118.
00:05:28
Introduction to Logistic Regression Section
Урок 119.
00:05:37
Logistic Regression - Theory and Intuition - Part One: The Logistic Function
Урок 120.
00:04:55
Logistic Regression - Theory and Intuition - Part Two: Linear to Logistic
Урок 121.
00:17:01
Logistic Regression - Theory and Intuition - Linear to Logistic Math
Урок 122.
00:15:43
Logistic Regression - Theory and Intuition - Best fit with Maximum Likelihood
Урок 123.
00:13:58
Logistic Regression with Scikit-Learn - Part One - EDA
Урок 124.
00:06:39
Logistic Regression with Scikit-Learn - Part Two - Model Training
Урок 125.
00:09:46
Classification Metrics - Confusion Matrix and Accuracy
Урок 126.
00:06:01
Classification Metrics - Precison, Recall, F1-Score
Урок 127.
00:07:14
Classification Metrics - ROC Curves
Урок 128.
00:15:57
Logistic Regression with Scikit-Learn - Part Three - Performance Evaluation
Урок 129.
00:08:08
Multi-Class Classification with Logistic Regression - Part One - Data and EDA
Урок 130.
00:15:48
Multi-Class Classification with Logistic Regression - Part Two - Model
Урок 131.
00:04:00
Logistic Regression Exercise Project Overview
Урок 132.
00:21:37
Logistic Regression Project Exercise - Solutions
Урок 133.
00:02:12
Introduction to KNN Section
Урок 134.
00:11:19
KNN Classification - Theory and Intuition
Урок 135.
00:13:41
KNN Coding with Python - Part One
Урок 136.
00:23:26
KNN Coding with Python - Part Two - Choosing K
Урок 137.
00:03:19
KNN Classification Project Exercise Overview
Урок 138.
00:14:13
KNN Classification Project Exercise Solutions
Урок 139.
00:01:30
Introduction to Support Vector Machines
Урок 140.
00:04:42
History of Support Vector Machines
Урок 141.
00:13:26
SVM - Theory and Intuition - Hyperplanes and Margins
Урок 142.
00:04:58
SVM - Theory and Intuition - Kernel Intuition
Урок 143.
00:20:51
SVM - Theory and Intuition - Kernel Trick and Mathematics
Урок 144.
00:11:00
SVM with Scikit-Learn and Python - Classification Part One
Урок 145.
00:16:03
SVM with Scikit-Learn and Python - Classification Part Two
Урок 146.
00:21:00
SVM with Scikit-Learn and Python - Regression Tasks
Урок 147.
00:04:28
Support Vector Machine Project Overview
Урок 148.
00:18:32
Support Vector Machine Project Solutions
Урок 149.
00:01:23
Introduction to Tree Based Methods
Урок 150.
00:09:05
Decision Tree - History
Урок 151.
00:04:13
Decision Tree - Terminology
Урок 152.
00:07:53
Decision Tree - Understanding Gini Impurity
Урок 153.
00:07:33
Constructing Decision Trees with Gini Impurity - Part One
Урок 154.
00:11:25
Constructing Decision Trees with Gini Impurity - Part Two
Урок 155.
00:19:19
Coding Decision Trees - Part One - The Data
Урок 156.
00:20:57
Coding Decision Trees - Part Two -Creating the Model
Урок 157.
00:01:47
Introduction to Random Forests Section
Урок 158.
00:11:39
Random Forests - History and Motivation
Урок 159.
00:03:00
Random Forests - Key Hyperparameters
Урок 160.
00:10:57
Random Forests - Number of Estimators and Features in Subsets
Урок 161.
00:12:47
Random Forests - Bootstrapping and Out-of-Bag Error
Урок 162.
00:11:37
Coding Classification with Random Forest Classifier - Part One
Урок 163.
00:22:23
Coding Classification with Random Forest Classifier - Part Two
Урок 164.
00:04:29
Coding Regression with Random Forest Regressor - Part One - Data
Урок 165.
00:13:34
Coding Regression with Random Forest Regressor - Part Two - Basic Models
Урок 166.
00:10:31
Coding Regression with Random Forest Regressor - Part Three - Polynomials
Урок 167.
00:10:37
Coding Regression with Random Forest Regressor - Part Four - Advanced Models
Урок 168.
00:01:48
Introduction to Boosting Section
Урок 169.
00:06:12
Boosting Methods - Motivation and History
Урок 170.
00:19:52
AdaBoost Theory and Intuition
Урок 171.
00:11:14
AdaBoost Coding Part One - The Data
Урок 172.
00:18:10
AdaBoost Coding Part Two - The Model
Урок 173.
00:10:23
Gradient Boosting Theory
Урок 174.
00:12:49
Gradient Boosting Coding Walkthrough
Урок 175.
00:14:24
Introduction to Supervised Learning Capstone Project
Урок 176.
00:18:19
Solution Walkthrough - Supervised Learning Project - Data and EDA
Урок 177.
00:23:10
Solution Walkthrough - Supervised Learning Project - Cohort Analysis
Урок 178.
00:21:24
Solution Walkthrough - Supervised Learning Project - Tree Models
Урок 179.
00:02:37
Introduction to NLP and Naive Bayes Section
Урок 180.
00:08:05
Naive Bayes Algorithm - Part One - Bayes Theorem
Урок 181.
00:17:56
Naive Bayes Algorithm - Part Two - Model Algorithm
Урок 182.
00:10:34
Feature Extraction from Text - Part One - Theory and Intuition
Урок 183.
00:18:54
Feature Extraction from Text - Coding Count Vectorization Manually
Урок 184.
00:11:25
Feature Extraction from Text - Coding with Scikit-Learn
Урок 185.
00:11:24
Natural Language Processing - Classification of Text - Part One
Урок 186.
00:10:19
Natural Language Processing - Classification of Text - Part Two
Урок 187.
00:04:38
Text Classification Project Exercise Overview
Урок 188.
00:15:38
Text Classification Project Exercise Solutions
Урок 189.
00:08:18
Unsupervised Learning Overview
Урок 190.
00:02:15
Introduction to K-Means Clustering Section
Урок 191.
00:10:37
Clustering General Overview
Урок 192.
00:11:31
K-Means Clustering Theory
Урок 193.
00:19:49
K-Means Clustering - Coding Part One
Урок 194.
00:17:19
K-Means Clustering Coding Part Two
Урок 195.
00:14:33
K-Means Clustering Coding Part Three
Урок 196.
00:13:54
K-Means Color Quantization - Part One
Урок 197.
00:14:34
K-Means Color Quantization - Part Two
Урок 198.
00:07:48
K-Means Clustering Exercise Overview
Урок 199.
00:13:11
K-Means Clustering Exercise Solution - Part One
Урок 200.
00:15:52
K-Means Clustering Exercise Solution - Part Two
Урок 201.
00:08:21
K-Means Clustering Exercise Solution - Part Three
Урок 202.
00:00:51
Introduction to Hierarchical Clustering
Урок 203.
00:11:49
Hierarchical Clustering - Theory and Intuition
Урок 204.
00:16:13
Hierarchical Clustering - Coding Part One - Data and Visualization
Урок 205.
00:28:23
Hierarchical Clustering - Coding Part Two - Scikit-Learn
Урок 206.
00:01:01
Introduction to DBSCAN Section
Урок 207.
00:17:27
DBSCAN - Theory and Intuition
Урок 208.
00:12:24
DBSCAN versus K-Means Clustering
Урок 209.
00:07:16
DBSCAN - Hyperparameter Theory
Урок 210.
00:21:56
DBSCAN - Hyperparameter Tuning Methods
Урок 211.
00:05:56
DBSCAN - Outlier Project Exercise Overview
Урок 212.
00:23:21
DBSCAN - Outlier Project Exercise Solutions
Урок 213.
00:02:48
Introduction to Principal Component Analysis
Урок 214.
00:10:25
PCA Theory and Intuition - Part One
Урок 215.
00:11:13
PCA Theory and Intuition - Part Two
Урок 216.
00:18:17
PCA - Manual Implementation in Python
Урок 217.
00:12:10
PCA - SciKit-Learn
Урок 218.
00:07:22
PCA - Project Exercise Overview
Урок 219.
00:17:04
PCA - Project Exercise Solution
Урок 220.
00:02:20
Model Deployment Section Overview
Урок 221.
00:06:52
Model Deployment Considerations
Урок 222.
00:21:08
Model Persistence
Урок 223.
00:07:42
Model Deployment as an API - General Overview
Урок 224.
00:17:01
Model API - Creating the Script
Урок 225.
00:07:50
Testing the API