Этот материал находится в платной подписке. Оформи премиум подписку и смотри или слушай Machine Learning: Natural Language Processing in Python (V2), а также все другие курсы, прямо сейчас!
Премиум
  1. Урок 1. 00:10:41
    Introduction and Outline
  2. Урок 2. 00:05:07
    Are You Beginner, Intermediate, or Advanced? All are OK!
  3. Урок 3. 00:04:18
    Where to get the Code
  4. Урок 4. 00:08:57
    How to use Github & Extra Coding Tips (Optional)
  5. Урок 5. 00:03:41
    Vector Models & Text Preprocessing Intro
  6. Урок 6. 00:05:02
    Basic Definitions for NLP
  7. Урок 7. 00:10:42
    What is a Vector?
  8. Урок 8. 00:02:33
    Bag of Words
  9. Урок 9. 00:13:46
    Count Vectorizer (Theory)
  10. Урок 10. 00:14:46
    Tokenization
  11. Урок 11. 00:04:52
    Stopwords
  12. Урок 12. 00:12:04
    Stemming and Lemmatization
  13. Урок 13. 00:13:27
    Stemming and Lemmatization Demo
  14. Урок 14. 00:15:44
    Count Vectorizer (Code)
  15. Урок 15. 00:11:36
    Vector Similarity
  16. Урок 16. 00:14:17
    TF-IDF (Theory)
  17. Урок 17. 00:02:37
    (Interactive) Recommender Exercise Prompt
  18. Урок 18. 00:20:26
    TF-IDF (Code)
  19. Урок 19. 00:10:55
    Word-to-Index Mapping
  20. Урок 20. 00:15:09
    How to Build TF-IDF From Scratch
  21. Урок 21. 00:10:16
    Neural Word Embeddings
  22. Урок 22. 00:11:26
    Neural Word Embeddings Demo
  23. Урок 23. 00:03:51
    Vector Models & Text Preprocessing Summary
  24. Урок 24. 00:01:22
    Text Summarization Preview
  25. Урок 25. 00:10:42
    How To Do NLP In Other Languages
  26. Урок 26. 00:03:11
    Suggestion Box
  27. Урок 27. 00:04:47
    Probabilistic Models (Introduction)
  28. Урок 28. 00:02:43
    Markov Models Section Introduction
  29. Урок 29. 00:07:35
    The Markov Property
  30. Урок 30. 00:12:31
    The Markov Model
  31. Урок 31. 00:07:51
    Probability Smoothing and Log-Probabilities
  32. Урок 32. 00:07:30
    Building a Text Classifier (Theory)
  33. Урок 33. 00:06:34
    Building a Text Classifier (Exercise Prompt)
  34. Урок 34. 00:10:33
    Building a Text Classifier (Code pt 1)
  35. Урок 35. 00:12:07
    Building a Text Classifier (Code pt 2)
  36. Урок 36. 00:10:16
    Language Model (Theory)
  37. Урок 37. 00:06:53
    Language Model (Exercise Prompt)
  38. Урок 38. 00:10:46
    Language Model (Code pt 1)
  39. Урок 39. 00:09:26
    Language Model (Code pt 2)
  40. Урок 40. 00:03:01
    Markov Models Section Summary
  41. Урок 41. 00:07:56
    Article Spinning - Problem Description
  42. Урок 42. 00:04:25
    Article Spinning - N-Gram Approach
  43. Урок 43. 00:05:46
    Article Spinner Exercise Prompt
  44. Урок 44. 00:17:33
    Article Spinner in Python (pt 1)
  45. Урок 45. 00:10:01
    Article Spinner in Python (pt 2)
  46. Урок 46. 00:05:43
    Case Study: Article Spinning Gone Wrong
  47. Урок 47. 00:04:51
    Section Introduction
  48. Урок 48. 00:04:00
    Ciphers
  49. Урок 49. 00:16:07
    Language Models (Review)
  50. Урок 50. 00:21:24
    Genetic Algorithms
  51. Урок 51. 00:04:47
    Code Preparation
  52. Урок 52. 00:03:07
    Code pt 1
  53. Урок 53. 00:07:21
    Code pt 2
  54. Урок 54. 00:04:53
    Code pt 3
  55. Урок 55. 00:04:04
    Code pt 4
  56. Урок 56. 00:07:13
    Code pt 5
  57. Урок 57. 00:05:26
    Code pt 6
  58. Урок 58. 00:02:57
    Cipher Decryption - Additional Discussion
  59. Урок 59. 00:06:01
    Section Conclusion
  60. Урок 60. 00:05:51
    Machine Learning Models (Introduction)
  61. Урок 61. 00:06:33
    Spam Detection - Problem Description
  62. Урок 62. 00:11:38
    Naive Bayes Intuition
  63. Урок 63. 00:02:08
    Spam Detection - Exercise Prompt
  64. Урок 64. 00:12:26
    Aside: Class Imbalance, ROC, AUC, and F1 Score (pt 1)
  65. Урок 65. 00:11:03
    Aside: Class Imbalance, ROC, AUC, and F1 Score (pt 2)
  66. Урок 66. 00:16:24
    Spam Detection in Python
  67. Урок 67. 00:07:28
    Sentiment Analysis - Problem Description
  68. Урок 68. 00:17:37
    Logistic Regression Intuition (pt 1)
  69. Урок 69. 00:06:53
    Multiclass Logistic Regression (pt 2)
  70. Урок 70. 00:08:16
    Logistic Regression Training and Interpretation (pt 3)
  71. Урок 71. 00:04:01
    Sentiment Analysis - Exercise Prompt
  72. Урок 72. 00:10:39
    Sentiment Analysis in Python (pt 1)
  73. Урок 73. 00:08:29
    Sentiment Analysis in Python (pt 2)
  74. Урок 74. 00:05:35
    Text Summarization Section Introduction
  75. Урок 75. 00:05:31
    Text Summarization Using Vectors
  76. Урок 76. 00:01:51
    Text Summarization Exercise Prompt
  77. Урок 77. 00:12:41
    Text Summarization in Python
  78. Урок 78. 00:08:04
    TextRank Intuition
  79. Урок 79. 00:10:51
    TextRank - How It Really Works (Advanced)
  80. Урок 80. 00:01:24
    TextRank Exercise Prompt (Advanced)
  81. Урок 81. 00:14:34
    TextRank in Python (Advanced)
  82. Урок 82. 00:06:07
    Text Summarization in Python - The Easy Way (Beginner)
  83. Урок 83. 00:03:23
    Text Summarization Section Summary
  84. Урок 84. 00:03:08
    Topic Modeling Section Introduction
  85. Урок 85. 00:10:55
    Latent Dirichlet Allocation (LDA) - Essentials
  86. Урок 86. 00:03:42
    LDA - Code Preparation
  87. Урок 87. 00:01:53
    LDA - Maybe Useful Picture (Optional)
  88. Урок 88. 00:14:55
    Latent Dirichlet Allocation (LDA) - Intuition (Advanced)
  89. Урок 89. 00:11:39
    Topic Modeling with Latent Dirichlet Allocation (LDA) in Python
  90. Урок 90. 00:10:22
    Non-Negative Matrix Factorization (NMF) Intuition
  91. Урок 91. 00:05:34
    Topic Modeling with Non-Negative Matrix Factorization (NMF) in Python
  92. Урок 92. 00:01:38
    Topic Modeling Section Summary
  93. Урок 93. 00:04:07
    LSA / LSI Section Introduction
  94. Урок 94. 00:12:12
    SVD (Singular Value Decomposition) Intuition
  95. Урок 95. 00:07:47
    LSA / LSI: Applying SVD to NLP
  96. Урок 96. 00:09:16
    Latent Semantic Analysis / Latent Semantic Indexing in Python
  97. Урок 97. 00:06:01
    LSA / LSI Exercises
  98. Урок 98. 00:04:58
    Deep Learning Introduction (Intermediate-Advanced)
  99. Урок 99. 00:02:21
    The Neuron - Section Introduction
  100. Урок 100. 00:14:24
    Fitting a Line
  101. Урок 101. 00:07:21
    Classification Code Preparation
  102. Урок 102. 00:12:10
    Text Classification in Tensorflow
  103. Урок 103. 00:09:59
    The Neuron
  104. Урок 104. 00:10:54
    How does a model learn?
  105. Урок 105. 00:01:52
    The Neuron - Section Summary
  106. Урок 106. 00:07:00
    ANN - Section Introduction
  107. Урок 107. 00:09:41
    Forward Propagation
  108. Урок 108. 00:09:44
    The Geometrical Picture
  109. Урок 109. 00:17:19
    Activation Functions
  110. Урок 110. 00:08:42
    Multiclass Classification
  111. Урок 111. 00:04:36
    ANN Code Preparation
  112. Урок 112. 00:05:44
    Text Classification ANN in Tensorflow
  113. Урок 113. 00:11:34
    Text Preprocessing Code Preparation
  114. Урок 114. 00:05:31
    Text Preprocessing in Tensorflow
  115. Урок 115. 00:10:14
    Embeddings
  116. Урок 116. 00:04:08
    CBOW (Advanced)
  117. Урок 117. 00:00:58
    CBOW Exercise Prompt
  118. Урок 118. 00:19:25
    CBOW in Tensorflow (Advanced)
  119. Урок 119. 00:01:33
    ANN - Section Summary
  120. Урок 120. 00:06:22
    Aside: How to Choose Hyperparameters (Optional)
  121. Урок 121. 00:04:35
    CNN - Section Introduction
  122. Урок 122. 00:16:39
    What is Convolution?
  123. Урок 123. 00:05:57
    What is Convolution? (Pattern Matching)
  124. Урок 124. 00:06:42
    What is Convolution? (Weight Sharing)
  125. Урок 125. 00:15:59
    Convolution on Color Images
  126. Урок 126. 00:20:59
    CNN Architecture
  127. Урок 127. 00:08:08
    CNNs for Text
  128. Урок 128. 00:05:32
    Convolutional Neural Network for NLP in Tensorflow
  129. Урок 129. 00:01:28
    CNN - Section Summary
  130. Урок 130. 00:04:47
    RNN - Section Introduction
  131. Урок 131. 00:09:21
    Simple RNN / Elman Unit (pt 1)
  132. Урок 132. 00:09:43
    Simple RNN / Elman Unit (pt 2)
  133. Урок 133. 00:09:46
    RNN Code Preparation
  134. Урок 134. 00:08:27
    RNNs: Paying Attention to Shapes
  135. Урок 135. 00:17:36
    GRU and LSTM (pt 1)
  136. Урок 136. 00:11:37
    GRU and LSTM (pt 2)
  137. Урок 137. 00:05:57
    RNN for Text Classification in Tensorflow
  138. Урок 138. 00:19:51
    Parts-of-Speech (POS) Tagging in Tensorflow
  139. Урок 139. 00:05:14
    Named Entity Recognition (NER) in Tensorflow
  140. Урок 140. 00:03:20
    Exercise: Return to CNNs (Advanced)
  141. Урок 141. 00:01:59
    RNN - Section Summary
  142. Урок 142. 00:20:21
    Anaconda Environment Setup
  143. Урок 143. 00:17:15
    How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow
  144. Урок 144. 00:15:55
    How to Code by Yourself (part 1)
  145. Урок 145. 00:09:24
    How to Code by Yourself (part 2)
  146. Урок 146. 00:12:30
    Proof that using Jupyter Notebook is the same as not using it
  147. Урок 147. 00:10:25
    How to Succeed in this Course (Long Version)
  148. Урок 148. 00:22:05
    Is this for Beginners or Experts? Academic or Practical? Fast or slow-paced?
  149. Урок 149. 00:11:19
    Machine Learning and AI Prerequisite Roadmap (pt 1)
  150. Урок 150. 00:16:08
    Machine Learning and AI Prerequisite Roadmap (pt 2)
  151. Урок 151. 00:02:49
    What is the Appendix?
  152. Урок 152. 00:05:32
    BONUS