-
Урок 1. 00:10:41Introduction and Outline
-
Урок 2. 00:05:07Are You Beginner, Intermediate, or Advanced? All are OK!
-
Урок 3. 00:04:18Where to get the Code
-
Урок 4. 00:08:57How to use Github & Extra Coding Tips (Optional)
-
Урок 5. 00:03:41Vector Models & Text Preprocessing Intro
-
Урок 6. 00:05:02Basic Definitions for NLP
-
Урок 7. 00:10:42What is a Vector?
-
Урок 8. 00:02:33Bag of Words
-
Урок 9. 00:13:46Count Vectorizer (Theory)
-
Урок 10. 00:14:46Tokenization
-
Урок 11. 00:04:52Stopwords
-
Урок 12. 00:12:04Stemming and Lemmatization
-
Урок 13. 00:13:27Stemming and Lemmatization Demo
-
Урок 14. 00:15:44Count Vectorizer (Code)
-
Урок 15. 00:11:36Vector Similarity
-
Урок 16. 00:14:17TF-IDF (Theory)
-
Урок 17. 00:02:37(Interactive) Recommender Exercise Prompt
-
Урок 18. 00:20:26TF-IDF (Code)
-
Урок 19. 00:10:55Word-to-Index Mapping
-
Урок 20. 00:15:09How to Build TF-IDF From Scratch
-
Урок 21. 00:10:16Neural Word Embeddings
-
Урок 22. 00:11:26Neural Word Embeddings Demo
-
Урок 23. 00:03:51Vector Models & Text Preprocessing Summary
-
Урок 24. 00:01:22Text Summarization Preview
-
Урок 25. 00:10:42How To Do NLP In Other Languages
-
Урок 26. 00:03:11Suggestion Box
-
Урок 27. 00:04:47Probabilistic Models (Introduction)
-
Урок 28. 00:02:43Markov Models Section Introduction
-
Урок 29. 00:07:35The Markov Property
-
Урок 30. 00:12:31The Markov Model
-
Урок 31. 00:07:51Probability Smoothing and Log-Probabilities
-
Урок 32. 00:07:30Building a Text Classifier (Theory)
-
Урок 33. 00:06:34Building a Text Classifier (Exercise Prompt)
-
Урок 34. 00:10:33Building a Text Classifier (Code pt 1)
-
Урок 35. 00:12:07Building a Text Classifier (Code pt 2)
-
Урок 36. 00:10:16Language Model (Theory)
-
Урок 37. 00:06:53Language Model (Exercise Prompt)
-
Урок 38. 00:10:46Language Model (Code pt 1)
-
Урок 39. 00:09:26Language Model (Code pt 2)
-
Урок 40. 00:03:01Markov Models Section Summary
-
Урок 41. 00:07:56Article Spinning - Problem Description
-
Урок 42. 00:04:25Article Spinning - N-Gram Approach
-
Урок 43. 00:05:46Article Spinner Exercise Prompt
-
Урок 44. 00:17:33Article Spinner in Python (pt 1)
-
Урок 45. 00:10:01Article Spinner in Python (pt 2)
-
Урок 46. 00:05:43Case Study: Article Spinning Gone Wrong
-
Урок 47. 00:04:51Section Introduction
-
Урок 48. 00:04:00Ciphers
-
Урок 49. 00:16:07Language Models (Review)
-
Урок 50. 00:21:24Genetic Algorithms
-
Урок 51. 00:04:47Code Preparation
-
Урок 52. 00:03:07Code pt 1
-
Урок 53. 00:07:21Code pt 2
-
Урок 54. 00:04:53Code pt 3
-
Урок 55. 00:04:04Code pt 4
-
Урок 56. 00:07:13Code pt 5
-
Урок 57. 00:05:26Code pt 6
-
Урок 58. 00:02:57Cipher Decryption - Additional Discussion
-
Урок 59. 00:06:01Section Conclusion
-
Урок 60. 00:05:51Machine Learning Models (Introduction)
-
Урок 61. 00:06:33Spam Detection - Problem Description
-
Урок 62. 00:11:38Naive Bayes Intuition
-
Урок 63. 00:02:08Spam Detection - Exercise Prompt
-
Урок 64. 00:12:26Aside: Class Imbalance, ROC, AUC, and F1 Score (pt 1)
-
Урок 65. 00:11:03Aside: Class Imbalance, ROC, AUC, and F1 Score (pt 2)
-
Урок 66. 00:16:24Spam Detection in Python
-
Урок 67. 00:07:28Sentiment Analysis - Problem Description
-
Урок 68. 00:17:37Logistic Regression Intuition (pt 1)
-
Урок 69. 00:06:53Multiclass Logistic Regression (pt 2)
-
Урок 70. 00:08:16Logistic Regression Training and Interpretation (pt 3)
-
Урок 71. 00:04:01Sentiment Analysis - Exercise Prompt
-
Урок 72. 00:10:39Sentiment Analysis in Python (pt 1)
-
Урок 73. 00:08:29Sentiment Analysis in Python (pt 2)
-
Урок 74. 00:05:35Text Summarization Section Introduction
-
Урок 75. 00:05:31Text Summarization Using Vectors
-
Урок 76. 00:01:51Text Summarization Exercise Prompt
-
Урок 77. 00:12:41Text Summarization in Python
-
Урок 78. 00:08:04TextRank Intuition
-
Урок 79. 00:10:51TextRank - How It Really Works (Advanced)
-
Урок 80. 00:01:24TextRank Exercise Prompt (Advanced)
-
Урок 81. 00:14:34TextRank in Python (Advanced)
-
Урок 82. 00:06:07Text Summarization in Python - The Easy Way (Beginner)
-
Урок 83. 00:03:23Text Summarization Section Summary
-
Урок 84. 00:03:08Topic Modeling Section Introduction
-
Урок 85. 00:10:55Latent Dirichlet Allocation (LDA) - Essentials
-
Урок 86. 00:03:42LDA - Code Preparation
-
Урок 87. 00:01:53LDA - Maybe Useful Picture (Optional)
-
Урок 88. 00:14:55Latent Dirichlet Allocation (LDA) - Intuition (Advanced)
-
Урок 89. 00:11:39Topic Modeling with Latent Dirichlet Allocation (LDA) in Python
-
Урок 90. 00:10:22Non-Negative Matrix Factorization (NMF) Intuition
-
Урок 91. 00:05:34Topic Modeling with Non-Negative Matrix Factorization (NMF) in Python
-
Урок 92. 00:01:38Topic Modeling Section Summary
-
Урок 93. 00:04:07LSA / LSI Section Introduction
-
Урок 94. 00:12:12SVD (Singular Value Decomposition) Intuition
-
Урок 95. 00:07:47LSA / LSI: Applying SVD to NLP
-
Урок 96. 00:09:16Latent Semantic Analysis / Latent Semantic Indexing in Python
-
Урок 97. 00:06:01LSA / LSI Exercises
-
Урок 98. 00:04:58Deep Learning Introduction (Intermediate-Advanced)
-
Урок 99. 00:02:21The Neuron - Section Introduction
-
Урок 100. 00:14:24Fitting a Line
-
Урок 101. 00:07:21Classification Code Preparation
-
Урок 102. 00:12:10Text Classification in Tensorflow
-
Урок 103. 00:09:59The Neuron
-
Урок 104. 00:10:54How does a model learn?
-
Урок 105. 00:01:52The Neuron - Section Summary
-
Урок 106. 00:07:00ANN - Section Introduction
-
Урок 107. 00:09:41Forward Propagation
-
Урок 108. 00:09:44The Geometrical Picture
-
Урок 109. 00:17:19Activation Functions
-
Урок 110. 00:08:42Multiclass Classification
-
Урок 111. 00:04:36ANN Code Preparation
-
Урок 112. 00:05:44Text Classification ANN in Tensorflow
-
Урок 113. 00:11:34Text Preprocessing Code Preparation
-
Урок 114. 00:05:31Text Preprocessing in Tensorflow
-
Урок 115. 00:10:14Embeddings
-
Урок 116. 00:04:08CBOW (Advanced)
-
Урок 117. 00:00:58CBOW Exercise Prompt
-
Урок 118. 00:19:25CBOW in Tensorflow (Advanced)
-
Урок 119. 00:01:33ANN - Section Summary
-
Урок 120. 00:06:22Aside: How to Choose Hyperparameters (Optional)
-
Урок 121. 00:04:35CNN - Section Introduction
-
Урок 122. 00:16:39What is Convolution?
-
Урок 123. 00:05:57What is Convolution? (Pattern Matching)
-
Урок 124. 00:06:42What is Convolution? (Weight Sharing)
-
Урок 125. 00:15:59Convolution on Color Images
-
Урок 126. 00:20:59CNN Architecture
-
Урок 127. 00:08:08CNNs for Text
-
Урок 128. 00:05:32Convolutional Neural Network for NLP in Tensorflow
-
Урок 129. 00:01:28CNN - Section Summary
-
Урок 130. 00:04:47RNN - Section Introduction
-
Урок 131. 00:09:21Simple RNN / Elman Unit (pt 1)
-
Урок 132. 00:09:43Simple RNN / Elman Unit (pt 2)
-
Урок 133. 00:09:46RNN Code Preparation
-
Урок 134. 00:08:27RNNs: Paying Attention to Shapes
-
Урок 135. 00:17:36GRU and LSTM (pt 1)
-
Урок 136. 00:11:37GRU and LSTM (pt 2)
-
Урок 137. 00:05:57RNN for Text Classification in Tensorflow
-
Урок 138. 00:19:51Parts-of-Speech (POS) Tagging in Tensorflow
-
Урок 139. 00:05:14Named Entity Recognition (NER) in Tensorflow
-
Урок 140. 00:03:20Exercise: Return to CNNs (Advanced)
-
Урок 141. 00:01:59RNN - Section Summary
-
Урок 142. 00:20:21Anaconda Environment Setup
-
Урок 143. 00:17:15How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow
-
Урок 144. 00:15:55How to Code by Yourself (part 1)
-
Урок 145. 00:09:24How to Code by Yourself (part 2)
-
Урок 146. 00:12:30Proof that using Jupyter Notebook is the same as not using it
-
Урок 147. 00:10:25How to Succeed in this Course (Long Version)
-
Урок 148. 00:22:05Is this for Beginners or Experts? Academic or Practical? Fast or slow-paced?
-
Урок 149. 00:11:19Machine Learning and AI Prerequisite Roadmap (pt 1)
-
Урок 150. 00:16:08Machine Learning and AI Prerequisite Roadmap (pt 2)
-
Урок 151. 00:02:49What is the Appendix?
-
Урок 152. 00:05:32BONUS
- Категории
- Источники
- Все курсы
- Разделы
- Книги