Видео курса

  • Урок 1. 00:06:00
    Course Outline
  • Урок 2. 00:03:49
    Your First Day
  • Урок 3. 00:06:53
    What Is Machine Learning?
  • Урок 4. 00:04:52
    AI/Machine Learning/Data Science
  • Урок 5. 00:06:17
    Exercise: Machine Learning Playground
  • Урок 6. 00:06:04
    How Did We Get Here?
  • Урок 7. 00:04:25
    Exercise: YouTube Recommendation Engine
  • Урок 8. 00:04:42
    Types of Machine Learning
  • Урок 9. 00:04:45
    What Is Machine Learning? Round 2
  • Урок 10. 00:01:49
    Section Review
  • Урок 11. 00:03:09
    Section Overview
  • Урок 12. 00:02:39
    Introducing Our Framework
  • Урок 13. 00:05:00
    6 Step Machine Learning Framework
  • Урок 14. 00:10:33
    Types of Machine Learning Problems
  • Урок 15. 00:04:51
    Types of Data
  • Урок 16. 00:03:32
    Types of Evaluation
  • Урок 17. 00:05:23
    Features In Data
  • Урок 18. 00:05:59
    Modelling - Splitting Data
  • Урок 19. 00:04:36
    Modelling - Picking the Model
  • Урок 20. 00:03:18
    Modelling - Tuning
  • Урок 21. 00:09:33
    Modelling - Comparison
  • Урок 22. 00:03:36
    Experimentation
  • Урок 23. 00:04:01
    Tools We Will Use
  • Урок 24. 00:03:28
    The 2 Paths
  • Урок 25. 00:01:10
    Section Overview
  • Урок 26. 00:03:29
    Introducing Our Tools
  • Урок 27. 00:02:36
    What is Conda?
  • Урок 28. 00:04:31
    Conda Environments
  • Урок 29. 00:17:27
    Mac Environment Setup
  • Урок 30. 00:14:12
    Mac Environment Setup 2
  • Урок 31. 00:05:18
    Windows Environment Setup
  • Урок 32. 00:23:18
    Windows Environment Setup 2
  • Урок 33. 00:10:21
    Jupyter Notebook Walkthrough
  • Урок 34. 00:16:18
    Jupyter Notebook Walkthrough 2
  • Урок 35. 00:08:11
    Jupyter Notebook Walkthrough 3
  • Урок 36. 00:02:28
    Section Overview
  • Урок 37. 00:04:30
    Pandas Introduction
  • Урок 38. 00:13:22
    Series, Data Frames and CSVs
  • Урок 39. 00:09:49
    Describing Data with Pandas
  • Урок 40. 00:11:09
    Selecting and Viewing Data with Pandas
  • Урок 41. 00:13:07
    Selecting and Viewing Data with Pandas Part 2
  • Урок 42. 00:13:57
    Manipulating Data
  • Урок 43. 00:09:57
    Manipulating Data 2
  • Урок 44. 00:10:13
    Manipulating Data 3
  • Урок 45. 00:07:44
    How To Download The Course Assignments
  • Урок 46. 00:02:41
    Section Overview
  • Урок 47. 00:05:18
    NumPy Introduction
  • Урок 48. 00:14:06
    NumPy DataTypes and Attributes
  • Урок 49. 00:09:23
    Creating NumPy Arrays
  • Урок 50. 00:07:18
    NumPy Random Seed
  • Урок 51. 00:09:36
    Viewing Arrays and Matrices
  • Урок 52. 00:11:32
    Manipulating Arrays
  • Урок 53. 00:09:45
    Manipulating Arrays 2
  • Урок 54. 00:07:11
    Standard Deviation and Variance
  • Урок 55. 00:07:27
    Reshape and Transpose
  • Урок 56. 00:11:46
    Dot Product vs Element Wise
  • Урок 57. 00:13:05
    Exercise: Nut Butter Store Sales
  • Урок 58. 00:03:34
    Comparison Operators
  • Урок 59. 00:06:20
    Sorting Arrays
  • Урок 60. 00:07:38
    Turn Images Into NumPy Arrays
  • Урок 61. 00:01:51
    Section Overview
  • Урок 62. 00:05:17
    Matplotlib Introduction
  • Урок 63. 00:11:37
    Importing And Using Matplotlib
  • Урок 64. 00:09:20
    Anatomy Of A Matplotlib Figure
  • Урок 65. 00:10:10
    Scatter Plot And Bar Plot
  • Урок 66. 00:08:41
    Histograms And Subplots
  • Урок 67. 00:04:16
    Subplots Option 2
  • Урок 68. 00:01:49
    Quick Tip: Data Visualizations
  • Урок 69. 00:05:59
    Plotting From Pandas DataFrames
  • Урок 70. 00:10:34
    Plotting From Pandas DataFrames 2
  • Урок 71. 00:08:33
    Plotting from Pandas DataFrames 3
  • Урок 72. 00:06:37
    Plotting from Pandas DataFrames 4
  • Урок 73. 00:08:29
    Plotting from Pandas DataFrames 5
  • Урок 74. 00:08:28
    Plotting from Pandas DataFrames 6
  • Урок 75. 00:11:21
    Plotting from Pandas DataFrames 7
  • Урок 76. 00:10:10
    Customizing Your Plots
  • Урок 77. 00:09:42
    Customizing Your Plots 2
  • Урок 78. 00:04:15
    Saving And Sharing Your Plots
  • Урок 79. 00:02:30
    Section Overview
  • Урок 80. 00:06:42
    Scikit-learn Introduction
  • Урок 81. 00:05:41
    Refresher: What Is Machine Learning?
  • Урок 82. 00:06:13
    Scikit-learn Cheatsheet
  • Урок 83. 00:23:15
    Typical scikit-learn Workflow
  • Урок 84. 00:18:58
    Optional: Debugging Warnings In Jupyter
  • Урок 85. 00:08:38
    Getting Your Data Ready: Splitting Your Data
  • Урок 86. 00:05:04
    Quick Tip: Clean, Transform, Reduce
  • Урок 87. 00:16:55
    Getting Your Data Ready: Convert Data To Numbers
  • Урок 88. 00:12:23
    Getting Your Data Ready: Handling Missing Values With Pandas
  • Урок 89. 00:17:30
    Getting Your Data Ready: Handling Missing Values With Scikit-learn
  • Урок 90. 00:14:55
    Choosing The Right Model For Your Data
  • Урок 91. 00:08:42
    Choosing The Right Model For Your Data 2 (Regression)
  • Урок 92. 00:01:26
    Quick Tip: How ML Algorithms Work
  • Урок 93. 00:12:46
    Choosing The Right Model For Your Data 3 (Classification)
  • Урок 94. 00:06:46
    Fitting A Model To The Data
  • Урок 95. 00:08:25
    Making Predictions With Our Model
  • Урок 96. 00:08:34
    predict() vs predict_proba()
  • Урок 97. 00:06:50
    Making Predictions With Our Model (Regression)
  • Урок 98. 00:08:58
    Evaluating A Machine Learning Model (Score)
  • Урок 99. 00:13:17
    Evaluating A Machine Learning Model 2 (Cross Validation)
  • Урок 100. 00:04:47
    Evaluating A Classification Model 1 (Accuracy)
  • Урок 101. 00:09:05
    Evaluating A Classification Model 2 (ROC Curve)
  • Урок 102. 00:07:45
    Evaluating A Classification Model 3 (ROC Curve)
  • Урок 103. 00:11:02
    Evaluating A Classification Model 4 (Confusion Matrix)
  • Урок 104. 00:08:08
    Evaluating A Classification Model 5 (Confusion Matrix)
  • Урок 105. 00:10:17
    Evaluating A Classification Model 6 (Classification Report)
  • Урок 106. 00:09:13
    Evaluating A Regression Model 1 (R2 Score)
  • Урок 107. 00:04:18
    Evaluating A Regression Model 2 (MAE)
  • Урок 108. 00:06:35
    Evaluating A Regression Model 3 (MSE)
  • Урок 109. 00:14:05
    Evaluating A Model With Cross Validation and Scoring Parameter
  • Урок 110. 00:12:15
    Evaluating A Model With Scikit-learn Functions
  • Урок 111. 00:11:17
    Improving A Machine Learning Model
  • Урок 112. 00:23:16
    Tuning Hyperparameters
  • Урок 113. 00:14:24
    Tuning Hyperparameters 2
  • Урок 114. 00:15:00
    Tuning Hyperparameters 3
  • Урок 115. 00:02:29
    Quick Tip: Correlation Analysis
  • Урок 116. 00:07:29
    Saving And Loading A Model
  • Урок 117. 00:06:21
    Saving And Loading A Model 2
  • Урок 118. 00:20:20
    Putting It All Together
  • Урок 119. 00:11:35
    Putting It All Together 2
  • Урок 120. 00:02:10
    Section Overview
  • Урок 121. 00:06:10
    Project Overview
  • Урок 122. 00:10:59
    Project Environment Setup
  • Урок 123. 00:12:07
    Step 1~4 Framework Setup
  • Урок 124. 00:09:05
    Getting Our Tools Ready
  • Урок 125. 00:08:34
    Exploring Our Data
  • Урок 126. 00:10:03
    Finding Patterns
  • Урок 127. 00:16:48
    Finding Patterns 2
  • Урок 128. 00:13:37
    Finding Patterns 3
  • Урок 129. 00:08:52
    Preparing Our Data For Machine Learning
  • Урок 130. 00:10:16
    Choosing The Right Models
  • Урок 131. 00:06:32
    Experimenting With Machine Learning Models
  • Урок 132. 00:13:50
    Tuning/Improving Our Model
  • Урок 133. 00:11:28
    Tuning Hyperparameters
  • Урок 134. 00:11:50
    Tuning Hyperparameters 2
  • Урок 135. 00:07:07
    Tuning Hyperparameters 3
  • Урок 136. 00:11:00
    Evaluating Our Model
  • Урок 137. 00:05:55
    Evaluating Our Model 2
  • Урок 138. 00:08:50
    Evaluating Our Model 3
  • Урок 139. 00:16:08
    Finding The Most Important Features
  • Урок 140. 00:09:14
    Reviewing The Project
  • Урок 141. 00:01:08
    Section Overview
  • Урок 142. 00:04:25
    Project Overview
  • Урок 143. 00:10:53
    Project Environment Setup
  • Урок 144. 00:08:37
    Step 1~4 Framework Setup
  • Урок 145. 00:14:17
    Exploring Our Data
  • Урок 146. 00:06:17
    Exploring Our Data 2
  • Урок 147. 00:15:25
    Feature Engineering
  • Урок 148. 00:15:39
    Turning Data Into Numbers
  • Урок 149. 00:12:50
    Filling Missing Numerical Values
  • Урок 150. 00:08:28
    Filling Missing Categorical Values
  • Урок 151. 00:07:17
    Fitting A Machine Learning Model
  • Урок 152. 00:10:01
    Splitting Data
  • Урок 153. 00:11:14
    Custom Evaluation Function
  • Урок 154. 00:10:37
    Reducing Data
  • Урок 155. 00:09:33
    RandomizedSearchCV
  • Урок 156. 00:08:12
    Improving Hyperparameters
  • Урок 157. 00:13:16
    Preproccessing Our Data
  • Урок 158. 00:09:18
    Making Predictions
  • Урок 159. 00:13:51
    Feature Importance
  • Урок 160. 00:03:24
    Data Engineering Introduction
  • Урок 161. 00:06:43
    What Is Data?
  • Урок 162. 00:04:21
    What Is A Data Engineer?
  • Урок 163. 00:05:36
    What Is A Data Engineer 2?
  • Урок 164. 00:05:04
    What Is A Data Engineer 3?
  • Урок 165. 00:03:23
    What Is A Data Engineer 4?
  • Урок 166. 00:06:51
    Types Of Databases
  • Урок 167. 00:10:55
    Optional: OLTP Databases
  • Урок 168. 00:04:23
    Hadoop, HDFS and MapReduce
  • Урок 169. 00:02:08
    Apache Spark and Apache Flink
  • Урок 170. 00:04:34
    Kafka and Stream Processing
  • Урок 171. 00:02:07
    Section Overview
  • Урок 172. 00:13:37
    Deep Learning and Unstructured Data
  • Урок 173. 00:07:18
    Setting Up Google Colab
  • Урок 174. 00:04:24
    Google Colab Workspace
  • Урок 175. 00:06:53
    Uploading Project Data
  • Урок 176. 00:04:41
    Setting Up Our Data
  • Урок 177. 00:01:33
    Setting Up Our Data 2
  • Урок 178. 00:12:44
    Importing TensorFlow 2
  • Урок 179. 00:03:39
    Optional: TensorFlow 2.0 Default Issue
  • Урок 180. 00:09:00
    Using A GPU
  • Урок 181. 00:04:28
    Optional: GPU and Google Colab
  • Урок 182. 00:06:50
    Optional: Reloading Colab Notebook
  • Урок 183. 00:12:05
    Loading Our Data Labels
  • Урок 184. 00:12:33
    Preparing The Images
  • Урок 185. 00:12:12
    Turning Data Labels Into Numbers
  • Урок 186. 00:09:19
    Creating Our Own Validation Set
  • Урок 187. 00:10:26
    Preprocess Images
  • Урок 188. 00:11:01
    Preprocess Images 2
  • Урок 189. 00:09:38
    Turning Data Into Batches
  • Урок 190. 00:17:55
    Turning Data Into Batches 2
  • Урок 191. 00:12:42
    Visualizing Our Data
  • Урок 192. 00:06:38
    Preparing Our Inputs and Outputs
  • Урок 193. 00:11:43
    Building A Deep Learning Model
  • Урок 194. 00:10:54
    Building A Deep Learning Model 2
  • Урок 195. 00:09:06
    Building A Deep Learning Model 3
  • Урок 196. 00:09:13
    Building A Deep Learning Model 4
  • Урок 197. 00:04:53
    Summarizing Our Model
  • Урок 198. 00:09:27
    Evaluating Our Model
  • Урок 199. 00:04:21
    Preventing Overfitting
  • Урок 200. 00:19:10
    Training Your Deep Neural Network
  • Урок 201. 00:07:31
    Evaluating Performance With TensorBoard
  • Урок 202. 00:15:05
    Make And Transform Predictons
  • Урок 203. 00:15:20
    Transform Predictions To Text
  • Урок 204. 00:14:47
    Visualizing Model Predictions
  • Урок 205. 00:15:53
    Visualizing And Evaluate Model Predictions 2
  • Урок 206. 00:10:40
    Visualizing And Evaluate Model Predictions 3
  • Урок 207. 00:13:35
    Saving And Loading A Trained Model
  • Урок 208. 00:15:03
    Training Model On Full Dataset
  • Урок 209. 00:16:55
    Making Predictions On Test Images
  • Урок 210. 00:14:15
    Submitting Model to Kaggle
  • Урок 211. 00:15:16
    Making Predictions On Our Images
  • Урок 212. 00:02:20
    Section Overview
  • Урок 213. 00:15:04
    What If I Don't Have Enough Experience?
  • Урок 214. 00:02:00
    JTS: Learn to Learn
  • Урок 215. 00:02:44
    JTS: Start With Why
  • Урок 216. 00:17:41
    CWD: Git + Github
  • Урок 217. 00:16:53
    CWD: Git + Github 2
  • Урок 218. 00:14:45
    Contributing To Open Source
  • Урок 219. 00:09:43
    Contributing To Open Source 2
  • Урок 220. 00:06:25
    What Is A Programming Language
  • Урок 221. 00:07:05
    Python Interpreter
  • Урок 222. 00:04:54
    How To Run Python Code
  • Урок 223. 00:07:44
    Our First Python Program
  • Урок 224. 00:06:41
    Python 2 vs Python 3
  • Урок 225. 00:02:10
    Exercise: How Does Python Work?
  • Урок 226. 00:02:06
    Learning Python
  • Урок 227. 00:04:47
    Python Data Types
  • Урок 228. 00:11:10
    Numbers
  • Урок 229. 00:04:30
    Math Functions
  • Урок 230. 00:04:08
    DEVELOPER FUNDAMENTALS: I
  • Урок 231. 00:03:11
    Operator Precedence
  • Урок 232. 00:04:03
    Optional: bin() and complex
  • Урок 233. 00:13:13
    Variables
  • Урок 234. 00:01:37
    Expressions vs Statements
  • Урок 235. 00:02:50
    Augmented Assignment Operator
  • Урок 236. 00:05:30
    Strings
  • Урок 237. 00:01:17
    String Concatenation
  • Урок 238. 00:03:04
    Type Conversion
  • Урок 239. 00:04:24
    Escape Sequences
  • Урок 240. 00:08:24
    Formatted Strings
  • Урок 241. 00:08:58
    String Indexes
  • Урок 242. 00:03:14
    Immutability
  • Урок 243. 00:10:04
    Built-In Functions + Methods
  • Урок 244. 00:03:22
    Booleans
  • Урок 245. 00:08:23
    Exercise: Type Conversion
  • Урок 246. 00:04:43
    DEVELOPER FUNDAMENTALS: II
  • Урок 247. 00:07:22
    Exercise: Password Checker
  • Урок 248. 00:05:02
    Lists
  • Урок 249. 00:07:49
    List Slicing
  • Урок 250. 00:04:12
    Matrix
  • Урок 251. 00:10:29
    List Methods
  • Урок 252. 00:04:25
    List Methods 2
  • Урок 253. 00:04:53
    List Methods 3
  • Урок 254. 00:05:58
    Common List Patterns
  • Урок 255. 00:02:41
    List Unpacking
  • Урок 256. 00:01:52
    None
  • Урок 257. 00:06:21
    Dictionaries
  • Урок 258. 00:02:41
    DEVELOPER FUNDAMENTALS: III
  • Урок 259. 00:03:38
    Dictionary Keys
  • Урок 260. 00:04:38
    Dictionary Methods
  • Урок 261. 00:07:05
    Dictionary Methods 2
  • Урок 262. 00:04:47
    Tuples
  • Урок 263. 00:03:15
    Tuples 2
  • Урок 264. 00:07:25
    Sets
  • Урок 265. 00:08:46
    Sets 2
  • Урок 266. 00:02:35
    Breaking The Flow
  • Урок 267. 00:13:18
    Conditional Logic
  • Урок 268. 00:04:39
    Indentation In Python
  • Урок 269. 00:05:18
    Truthy vs Falsey
  • Урок 270. 00:04:15
    Ternary Operator
  • Урок 271. 00:04:03
    Short Circuiting
  • Урок 272. 00:06:57
    Logical Operators
  • Урок 273. 00:07:48
    Exercise: Logical Operators
  • Урок 274. 00:07:37
    is vs ==
  • Урок 275. 00:07:02
    For Loops
  • Урок 276. 00:06:44
    Iterables
  • Урок 277. 00:03:24
    Exercise: Tricky Counter
  • Урок 278. 00:05:39
    range()
  • Урок 279. 00:04:38
    enumerate()
  • Урок 280. 00:06:29
    While Loops
  • Урок 281. 00:05:50
    While Loops 2
  • Урок 282. 00:04:16
    break, continue, pass
  • Урок 283. 00:08:49
    Our First GUI
  • Урок 284. 00:06:35
    DEVELOPER FUNDAMENTALS: IV
  • Урок 285. 00:03:55
    Exercise: Find Duplicates
  • Урок 286. 00:07:42
    Functions
  • Урок 287. 00:04:25
    Parameters and Arguments
  • Урок 288. 00:05:41
    Default Parameters and Keyword Arguments
  • Урок 289. 00:13:12
    return
  • Урок 290. 00:04:34
    Methods vs Functions
  • Урок 291. 00:03:48
    Docstrings
  • Урок 292. 00:04:39
    Clean Code
  • Урок 293. 00:07:57
    *args and **kwargs
  • Урок 294. 00:04:19
    Exercise: Functions
  • Урок 295. 00:03:38
    Scope
  • Урок 296. 00:06:56
    Scope Rules
  • Урок 297. 00:06:14
    global Keyword
  • Урок 298. 00:03:22
    nonlocal Keyword
  • Урок 299. 00:03:39
    Why Do We Need Scope?
  • Урок 300. 00:09:24
    Pure Functions
  • Урок 301. 00:06:31
    map()
  • Урок 302. 00:04:24
    filter()
  • Урок 303. 00:03:29
    zip()
  • Урок 304. 00:07:32
    reduce()
  • Урок 305. 00:08:38
    List Comprehensions
  • Урок 306. 00:06:27
    Set Comprehensions
  • Урок 307. 00:04:37
    Exercise: Comprehensions
  • Урок 308. 00:10:55
    Modules in Python
  • Урок 309. 00:08:20
    Optional: PyCharm
  • Урок 310. 00:10:46
    Packages in Python
  • Урок 311. 00:07:04
    Different Ways To Import
  • Урок 312. 00:02:45
    Thank You
Этот курс находится в платной подписке. Оформи премиум подписку и смотри Complete Machine Learning and Data Science: Zero to Mastery, а также все другие курсы, прямо сейчас!
Премиум FAQ