-
Урок 1.
00:06:00
Course Outline
-
Урок 2.
00:04:02
Join Our Online Classroom!
-
Урок 3.
00:03:49
Your First Day
-
Урок 4.
00:06:53
What Is Machine Learning?
-
Урок 5.
00:04:52
AI/Machine Learning/Data Science
-
Урок 6.
00:04:24
ZTM Resources
-
Урок 7.
00:06:17
Exercise: Machine Learning Playground
-
Урок 8.
00:06:04
How Did We Get Here?
-
Урок 9.
00:04:25
Exercise: YouTube Recommendation Engine
-
Урок 10.
00:04:42
Types of Machine Learning
-
Урок 11.
00:04:46
What Is Machine Learning? Round 2
-
Урок 12.
00:01:49
Section Review
-
Урок 13.
00:03:09
Section Overview
-
Урок 14.
00:02:39
Introducing Our Framework
-
Урок 15.
00:05:00
6 Step Machine Learning Framework
-
Урок 16.
00:10:33
Types of Machine Learning Problems
-
Урок 17.
00:04:52
Types of Data
-
Урок 18.
00:03:32
Types of Evaluation
-
Урок 19.
00:05:23
Features In Data
-
Урок 20.
00:05:59
Modelling - Splitting Data
-
Урок 21.
00:04:36
Modelling - Picking the Model
-
Урок 22.
00:03:18
Modelling - Tuning
-
Урок 23.
00:09:33
Modelling - Comparison
-
Урок 24.
00:03:36
Experimentation
-
Урок 25.
00:04:01
Tools We Will Use
-
Урок 26.
00:03:28
The 2 Paths
-
Урок 27.
00:01:10
Section Overview
-
Урок 28.
00:03:29
Introducing Our Tools
-
Урок 29.
00:02:36
What is Conda?
-
Урок 30.
00:04:31
Conda Environments
-
Урок 31.
00:17:27
Mac Environment Setup
-
Урок 32.
00:14:12
Mac Environment Setup 2
-
Урок 33.
00:05:18
Windows Environment Setup
-
Урок 34.
00:23:18
Windows Environment Setup 2
-
Урок 35.
00:10:21
Jupyter Notebook Walkthrough
-
Урок 36.
00:16:19
Jupyter Notebook Walkthrough 2
-
Урок 37.
00:08:11
Jupyter Notebook Walkthrough 3
-
Урок 38.
00:02:28
Section Overview
-
Урок 39.
00:04:30
Pandas Introduction
-
Урок 40.
00:13:22
Series, Data Frames and CSVs
-
Урок 41.
00:09:49
Describing Data with Pandas
-
Урок 42.
00:11:09
Selecting and Viewing Data with Pandas
-
Урок 43.
00:13:08
Selecting and Viewing Data with Pandas Part 2
-
Урок 44.
00:13:57
Manipulating Data
-
Урок 45.
00:09:58
Manipulating Data 2
-
Урок 46.
00:10:13
Manipulating Data 3
-
Урок 47.
00:07:44
How To Download The Course Assignments
-
Урок 48.
00:02:41
Section Overview
-
Урок 49.
00:05:18
NumPy Introduction
-
Урок 50.
00:14:06
NumPy DataTypes and Attributes
-
Урок 51.
00:09:23
Creating NumPy Arrays
-
Урок 52.
00:07:18
NumPy Random Seed
-
Урок 53.
00:09:36
Viewing Arrays and Matrices
-
Урок 54.
00:11:33
Manipulating Arrays
-
Урок 55.
00:09:45
Manipulating Arrays 2
-
Урок 56.
00:07:11
Standard Deviation and Variance
-
Урок 57.
00:07:27
Reshape and Transpose
-
Урок 58.
00:11:46
Dot Product vs Element Wise
-
Урок 59.
00:13:05
Exercise: Nut Butter Store Sales
-
Урок 60.
00:03:34
Comparison Operators
-
Урок 61.
00:06:20
Sorting Arrays
-
Урок 62.
00:07:38
Turn Images Into NumPy Arrays
-
Урок 63.
00:02:57
Exercise: Imposter Syndrome
-
Урок 64.
00:01:51
Section Overview
-
Урок 65.
00:05:17
Matplotlib Introduction
-
Урок 66.
00:11:37
Importing And Using Matplotlib
-
Урок 67.
00:09:20
Anatomy Of A Matplotlib Figure
-
Урок 68.
00:10:10
Scatter Plot And Bar Plot
-
Урок 69.
00:08:41
Histograms And Subplots
-
Урок 70.
00:04:16
Subplots Option 2
-
Урок 71.
00:01:49
Quick Tip: Data Visualizations
-
Урок 72.
00:05:59
Plotting From Pandas DataFrames
-
Урок 73.
00:10:34
Plotting From Pandas DataFrames 2
-
Урок 74.
00:08:33
Plotting from Pandas DataFrames 3
-
Урок 75.
00:06:37
Plotting from Pandas DataFrames 4
-
Урок 76.
00:08:30
Plotting from Pandas DataFrames 5
-
Урок 77.
00:08:29
Plotting from Pandas DataFrames 6
-
Урок 78.
00:11:21
Plotting from Pandas DataFrames 7
-
Урок 79.
00:10:10
Customizing Your Plots
-
Урок 80.
00:09:42
Customizing Your Plots 2
-
Урок 81.
00:04:15
Saving And Sharing Your Plots
-
Урок 82.
00:02:30
Section Overview
-
Урок 83.
00:06:42
Scikit-learn Introduction
-
Урок 84.
00:05:41
Refresher: What Is Machine Learning?
-
Урок 85.
00:06:14
Scikit-learn Cheatsheet
-
Урок 86.
00:23:15
Typical scikit-learn Workflow
-
Урок 87.
00:18:58
Optional: Debugging Warnings In Jupyter
-
Урок 88.
00:08:38
Getting Your Data Ready: Splitting Your Data
-
Урок 89.
00:05:04
Quick Tip: Clean, Transform, Reduce
-
Урок 90.
00:16:55
Getting Your Data Ready: Convert Data To Numbers
-
Урок 91.
00:12:23
Getting Your Data Ready: Handling Missing Values With Pandas
-
Урок 92.
00:17:30
Getting Your Data Ready: Handling Missing Values With Scikit-learn
-
Урок 93.
00:20:15
NEW: Choosing The Right Model For Your Data
-
Урок 94.
00:11:22
NEW: Choosing The Right Model For Your Data 2 (Regression)
-
Урок 95.
00:01:26
Quick Tip: How ML Algorithms Work
-
Урок 96.
00:12:46
Choosing The Right Model For Your Data 3 (Classification)
-
Урок 97.
00:06:46
Fitting A Model To The Data
-
Урок 98.
00:08:25
Making Predictions With Our Model
-
Урок 99.
00:08:34
predict() vs predict_proba()
-
Урок 100.
00:08:49
NEW: Making Predictions With Our Model (Regression)
-
Урок 101.
00:09:42
NEW: Evaluating A Machine Learning Model (Score) Part 1
-
Урок 102.
00:06:48
NEW: Evaluating A Machine Learning Model (Score) Part 2
-
Урок 103.
00:13:17
Evaluating A Machine Learning Model 2 (Cross Validation)
-
Урок 104.
00:04:47
Evaluating A Classification Model 1 (Accuracy)
-
Урок 105.
00:09:05
Evaluating A Classification Model 2 (ROC Curve)
-
Урок 106.
00:07:45
Evaluating A Classification Model 3 (ROC Curve)
-
Урок 107.
00:11:02
Evaluating A Classification Model 4 (Confusion Matrix)
-
Урок 108.
00:14:23
NEW: Evaluating A Classification Model 5 (Confusion Matrix)
-
Урок 109.
00:10:17
Evaluating A Classification Model 6 (Classification Report)
-
Урок 110.
00:10:00
NEW: Evaluating A Regression Model 1 (R2 Score)
-
Урок 111.
00:07:23
NEW: Evaluating A Regression Model 2 (MAE)
-
Урок 112.
00:09:50
NEW: Evaluating A Regression Model 3 (MSE)
-
Урок 113.
00:25:20
NEW: Evaluating A Model With Cross Validation and Scoring Parameter
-
Урок 114.
00:14:03
NEW: Evaluating A Model With Scikit-learn Functions
-
Урок 115.
00:11:17
Improving A Machine Learning Model
-
Урок 116.
00:23:16
Tuning Hyperparameters
-
Урок 117.
00:14:24
Tuning Hyperparameters 2
-
Урок 118.
00:15:00
Tuning Hyperparameters 3
-
Урок 119.
00:02:29
Quick Tip: Correlation Analysis
-
Урок 120.
00:07:30
Saving And Loading A Model
-
Урок 121.
00:06:21
Saving And Loading A Model 2
-
Урок 122.
00:20:20
Putting It All Together
-
Урок 123.
00:11:35
Putting It All Together 2
-
Урок 124.
00:02:10
Section Overview
-
Урок 125.
00:06:10
Project Overview
-
Урок 126.
00:11:00
Project Environment Setup
-
Урок 127.
00:04:53
Optional: Windows Project Environment Setup
-
Урок 128.
00:12:07
Step 1~4 Framework Setup
-
Урок 129.
00:09:05
Getting Our Tools Ready
-
Урок 130.
00:08:34
Exploring Our Data
-
Урок 131.
00:10:03
Finding Patterns
-
Урок 132.
00:16:48
Finding Patterns 2
-
Урок 133.
00:13:38
Finding Patterns 3
-
Урок 134.
00:08:52
Preparing Our Data For Machine Learning
-
Урок 135.
00:10:16
Choosing The Right Models
-
Урок 136.
00:06:32
Experimenting With Machine Learning Models
-
Урок 137.
00:13:50
Tuning/Improving Our Model
-
Урок 138.
00:11:28
Tuning Hyperparameters
-
Урок 139.
00:11:50
Tuning Hyperparameters 2
-
Урок 140.
00:07:07
Tuning Hyperparameters 3
-
Урок 141.
00:11:00
Evaluating Our Model
-
Урок 142.
00:05:56
Evaluating Our Model 2
-
Урок 143.
00:08:50
Evaluating Our Model 3
-
Урок 144.
00:16:08
Finding The Most Important Features
-
Урок 145.
00:09:14
Reviewing The Project
-
Урок 146.
00:01:08
Section Overview
-
Урок 147.
00:04:25
Project Overview
-
Урок 148.
00:10:53
Project Environment Setup
-
Урок 149.
00:08:37
Step 1~4 Framework Setup
-
Урок 150.
00:14:17
Exploring Our Data
-
Урок 151.
00:06:17
Exploring Our Data 2
-
Урок 152.
00:15:25
Feature Engineering
-
Урок 153.
00:15:39
Turning Data Into Numbers
-
Урок 154.
00:12:50
Filling Missing Numerical Values
-
Урок 155.
00:08:28
Filling Missing Categorical Values
-
Урок 156.
00:07:17
Fitting A Machine Learning Model
-
Урок 157.
00:10:01
Splitting Data
-
Урок 158.
00:11:14
Custom Evaluation Function
-
Урок 159.
00:10:37
Reducing Data
-
Урок 160.
00:09:33
RandomizedSearchCV
-
Урок 161.
00:08:12
Improving Hyperparameters
-
Урок 162.
00:13:16
Preproccessing Our Data
-
Урок 163.
00:09:18
Making Predictions
-
Урок 164.
00:13:51
Feature Importance
-
Урок 165.
00:03:25
Data Engineering Introduction
-
Урок 166.
00:06:43
What Is Data?
-
Урок 167.
00:04:21
What Is A Data Engineer?
-
Урок 168.
00:05:37
What Is A Data Engineer 2?
-
Урок 169.
00:05:04
What Is A Data Engineer 3?
-
Урок 170.
00:03:23
What Is A Data Engineer 4?
-
Урок 171.
00:06:51
Types Of Databases
-
Урок 172.
00:10:55
Optional: OLTP Databases
-
Урок 173.
00:04:23
Hadoop, HDFS and MapReduce
-
Урок 174.
00:02:08
Apache Spark and Apache Flink
-
Урок 175.
00:04:34
Kafka and Stream Processing
-
Урок 176.
00:02:07
Section Overview
-
Урок 177.
00:13:37
Deep Learning and Unstructured Data
-
Урок 178.
00:07:18
Setting Up Google Colab
-
Урок 179.
00:04:24
Google Colab Workspace
-
Урок 180.
00:06:53
Uploading Project Data
-
Урок 181.
00:04:41
Setting Up Our Data
-
Урок 182.
00:01:33
Setting Up Our Data 2
-
Урок 183.
00:12:44
Importing TensorFlow 2
-
Урок 184.
00:03:40
Optional: TensorFlow 2.0 Default Issue
-
Урок 185.
00:09:00
Using A GPU
-
Урок 186.
00:04:28
Optional: GPU and Google Colab
-
Урок 187.
00:06:50
Optional: Reloading Colab Notebook
-
Урок 188.
00:12:05
Loading Our Data Labels
-
Урок 189.
00:12:33
Preparing The Images
-
Урок 190.
00:12:12
Turning Data Labels Into Numbers
-
Урок 191.
00:09:19
Creating Our Own Validation Set
-
Урок 192.
00:10:26
Preprocess Images
-
Урок 193.
00:11:01
Preprocess Images 2
-
Урок 194.
00:09:38
Turning Data Into Batches
-
Урок 195.
00:17:55
Turning Data Into Batches 2
-
Урок 196.
00:12:42
Visualizing Our Data
-
Урок 197.
00:06:39
Preparing Our Inputs and Outputs
-
Урок 198.
00:11:43
Building A Deep Learning Model
-
Урок 199.
00:10:54
Building A Deep Learning Model 2
-
Урок 200.
00:09:06
Building A Deep Learning Model 3
-
Урок 201.
00:09:13
Building A Deep Learning Model 4
-
Урок 202.
00:04:53
Summarizing Our Model
-
Урок 203.
00:09:27
Evaluating Our Model
-
Урок 204.
00:04:21
Preventing Overfitting
-
Урок 205.
00:19:10
Training Your Deep Neural Network
-
Урок 206.
00:07:31
Evaluating Performance With TensorBoard
-
Урок 207.
00:15:05
Make And Transform Predictions
-
Урок 208.
00:15:21
Transform Predictions To Text
-
Урок 209.
00:14:47
Visualizing Model Predictions
-
Урок 210.
00:15:53
Visualizing And Evaluate Model Predictions 2
-
Урок 211.
00:10:40
Visualizing And Evaluate Model Predictions 3
-
Урок 212.
00:13:35
Saving And Loading A Trained Model
-
Урок 213.
00:15:03
Training Model On Full Dataset
-
Урок 214.
00:16:55
Making Predictions On Test Images
-
Урок 215.
00:14:15
Submitting Model to Kaggle
-
Урок 216.
00:15:16
Making Predictions On Our Images
-
Урок 217.
00:02:20
Section Overview
-
Урок 218.
00:03:23
Communicating Your Work
-
Урок 219.
00:02:59
Communicating With Managers
-
Урок 220.
00:03:43
Communicating With Co-Workers
-
Урок 221.
00:06:33
Weekend Project Principle
-
Урок 222.
00:03:30
Communicating With Outside World
-
Урок 223.
00:03:07
Storytelling
-
Урок 224.
00:15:04
What If I Don't Have Enough Experience?
-
Урок 225.
00:02:00
JTS: Learn to Learn
-
Урок 226.
00:02:44
JTS: Start With Why
-
Урок 227.
00:17:41
CWD: Git + Github
-
Урок 228.
00:16:53
CWD: Git + Github 2
-
Урок 229.
00:14:09
Contributing To Open Source
-
Урок 230.
00:09:41
Contributing To Open Source 2
-
Урок 231.
00:06:25
What Is A Programming Language
-
Урок 232.
00:07:05
Python Interpreter
-
Урок 233.
00:04:54
How To Run Python Code
-
Урок 234.
00:01:29
Latest Version Of Python
-
Урок 235.
00:07:44
Our First Python Program
-
Урок 236.
00:06:41
Python 2 vs Python 3
-
Урок 237.
00:02:10
Exercise: How Does Python Work?
-
Урок 238.
00:02:06
Learning Python
-
Урок 239.
00:04:47
Python Data Types
-
Урок 240.
00:11:10
Numbers
-
Урок 241.
00:04:30
Math Functions
-
Урок 242.
00:04:08
DEVELOPER FUNDAMENTALS: I
-
Урок 243.
00:03:11
Operator Precedence
-
Урок 244.
00:04:03
Optional: bin() and complex
-
Урок 245.
00:13:13
Variables
-
Урок 246.
00:01:37
Expressions vs Statements
-
Урок 247.
00:02:50
Augmented Assignment Operator
-
Урок 248.
00:05:30
Strings
-
Урок 249.
00:01:17
String Concatenation
-
Урок 250.
00:03:04
Type Conversion
-
Урок 251.
00:04:24
Escape Sequences
-
Урок 252.
00:08:25
Formatted Strings
-
Урок 253.
00:08:58
String Indexes
-
Урок 254.
00:03:14
Immutability
-
Урок 255.
00:10:04
Built-In Functions + Methods
-
Урок 256.
00:03:22
Booleans
-
Урок 257.
00:08:23
Exercise: Type Conversion
-
Урок 258.
00:04:43
DEVELOPER FUNDAMENTALS: II
-
Урок 259.
00:07:22
Exercise: Password Checker
-
Урок 260.
00:05:02
Lists
-
Урок 261.
00:07:49
List Slicing
-
Урок 262.
00:04:12
Matrix
-
Урок 263.
00:10:29
List Methods
-
Урок 264.
00:04:25
List Methods 2
-
Урок 265.
00:04:53
List Methods 3
-
Урок 266.
00:05:58
Common List Patterns
-
Урок 267.
00:02:42
List Unpacking
-
Урок 268.
00:01:52
None
-
Урок 269.
00:06:22
Dictionaries
-
Урок 270.
00:02:41
DEVELOPER FUNDAMENTALS: III
-
Урок 271.
00:03:38
Dictionary Keys
-
Урок 272.
00:04:38
Dictionary Methods
-
Урок 273.
00:07:05
Dictionary Methods 2
-
Урок 274.
00:04:47
Tuples
-
Урок 275.
00:03:15
Tuples 2
-
Урок 276.
00:07:25
Sets
-
Урок 277.
00:08:46
Sets 2
-
Урок 278.
00:02:36
Breaking The Flow
-
Урок 279.
00:13:19
Conditional Logic
-
Урок 280.
00:04:39
Indentation In Python
-
Урок 281.
00:05:19
Truthy vs Falsey
-
Урок 282.
00:04:15
Ternary Operator
-
Урок 283.
00:04:03
Short Circuiting
-
Урок 284.
00:06:57
Logical Operators
-
Урок 285.
00:07:48
Exercise: Logical Operators
-
Урок 286.
00:07:37
is vs ==
-
Урок 287.
00:07:02
For Loops
-
Урок 288.
00:06:44
Iterables
-
Урок 289.
00:03:24
Exercise: Tricky Counter
-
Урок 290.
00:05:39
range()
-
Урок 291.
00:04:38
enumerate()
-
Урок 292.
00:06:29
While Loops
-
Урок 293.
00:05:50
While Loops 2
-
Урок 294.
00:04:16
break, continue, pass
-
Урок 295.
00:08:49
Our First GUI
-
Урок 296.
00:06:35
DEVELOPER FUNDAMENTALS: IV
-
Урок 297.
00:03:55
Exercise: Find Duplicates
-
Урок 298.
00:07:42
Functions
-
Урок 299.
00:04:26
Parameters and Arguments
-
Урок 300.
00:05:41
Default Parameters and Keyword Arguments
-
Урок 301.
00:13:12
return
-
Урок 302.
00:04:34
Methods vs Functions
-
Урок 303.
00:03:48
Docstrings
-
Урок 304.
00:04:39
Clean Code
-
Урок 305.
00:07:57
*args and **kwargs
-
Урок 306.
00:04:19
Exercise: Functions
-
Урок 307.
00:03:39
Scope
-
Урок 308.
00:06:56
Scope Rules
-
Урок 309.
00:06:14
global Keyword
-
Урок 310.
00:03:22
nonlocal Keyword
-
Урок 311.
00:03:39
Why Do We Need Scope?
-
Урок 312.
00:09:24
Pure Functions
-
Урок 313.
00:06:31
map()
-
Урок 314.
00:04:24
filter()
-
Урок 315.
00:03:29
zip()
-
Урок 316.
00:07:32
reduce()
-
Урок 317.
00:08:38
List Comprehensions
-
Урок 318.
00:06:27
Set Comprehensions
-
Урок 319.
00:04:37
Exercise: Comprehensions
-
Урок 320.
00:10:55
Modules in Python
-
Урок 321.
00:08:20
Optional: PyCharm
-
Урок 322.
00:10:46
Packages in Python
-
Урок 323.
00:07:04
Different Ways To Import
-
Урок 324.
00:02:45
Thank You