Урок 1.00:06:00
Course Outline
Урок 2.00:04:02
Join Our Online Classroom!
Урок 3.00:03:49
Your First Day
Урок 4.00:06:53
What Is Machine Learning?
Урок 5.00:04:52
AI/Machine Learning/Data Science
Урок 6.00:04:24
ZTM Resources
Урок 7.00:06:17
Exercise: Machine Learning Playground
Урок 8.00:06:04
How Did We Get Here?
Урок 9.00:04:25
Exercise: YouTube Recommendation Engine
Урок 10.00:04:42
Types of Machine Learning
Урок 11.00:04:46
What Is Machine Learning? Round 2
Урок 12.00:01:49
Section Review
Урок 13.00:03:09
Section Overview
Урок 14.00:02:39
Introducing Our Framework
Урок 15.00:05:00
6 Step Machine Learning Framework
Урок 16.00:10:33
Types of Machine Learning Problems
Урок 17.00:04:52
Types of Data
Урок 18.00:03:32
Types of Evaluation
Урок 19.00:05:23
Features In Data
Урок 20.00:05:59
Modelling - Splitting Data
Урок 21.00:04:36
Modelling - Picking the Model
Урок 22.00:03:18
Modelling - Tuning
Урок 23.00:09:33
Modelling - Comparison
Урок 24.00:03:36
Experimentation
Урок 25.00:04:01
Tools We Will Use
Урок 26.00:03:28
The 2 Paths
Урок 27.00:01:10
Section Overview
Урок 28.00:03:29
Introducing Our Tools
Урок 29.00:02:36
What is Conda?
Урок 30.00:04:31
Conda Environments
Урок 31.00:17:27
Mac Environment Setup
Урок 32.00:14:12
Mac Environment Setup 2
Урок 33.00:05:18
Windows Environment Setup
Урок 34.00:23:18
Windows Environment Setup 2
Урок 35.00:10:21
Jupyter Notebook Walkthrough
Урок 36.00:16:19
Jupyter Notebook Walkthrough 2
Урок 37.00:08:11
Jupyter Notebook Walkthrough 3
Урок 38.00:02:28
Section Overview
Урок 39.00:04:30
Pandas Introduction
Урок 40.00:13:22
Series, Data Frames and CSVs
Урок 41.00:09:49
Describing Data with Pandas
Урок 42.00:11:09
Selecting and Viewing Data with Pandas
Урок 43.00:13:08
Selecting and Viewing Data with Pandas Part 2
Урок 44.00:13:57
Manipulating Data
Урок 45.00:09:58
Manipulating Data 2
Урок 46.00:10:13
Manipulating Data 3
Урок 47.00:07:44
How To Download The Course Assignments
Урок 48.00:02:41
Section Overview
Урок 49.00:05:18
NumPy Introduction
Урок 50.00:14:06
NumPy DataTypes and Attributes
Урок 51.00:09:23
Creating NumPy Arrays
Урок 52.00:07:18
NumPy Random Seed
Урок 53.00:09:36
Viewing Arrays and Matrices
Урок 54.00:11:33
Manipulating Arrays
Урок 55.00:09:45
Manipulating Arrays 2
Урок 56.00:07:11
Standard Deviation and Variance
Урок 57.00:07:27
Reshape and Transpose
Урок 58.00:11:46
Dot Product vs Element Wise
Урок 59.00:13:05
Exercise: Nut Butter Store Sales
Урок 60.00:03:34
Comparison Operators
Урок 61.00:06:20
Sorting Arrays
Урок 62.00:07:38
Turn Images Into NumPy Arrays
Урок 63.00:02:57
Exercise: Imposter Syndrome
Урок 64.00:01:51
Section Overview
Урок 65.00:05:17
Matplotlib Introduction
Урок 66.00:11:37
Importing And Using Matplotlib
Урок 67.00:09:20
Anatomy Of A Matplotlib Figure
Урок 68.00:10:10
Scatter Plot And Bar Plot
Урок 69.00:08:41
Histograms And Subplots
Урок 70.00:04:16
Subplots Option 2
Урок 71.00:01:49
Quick Tip: Data Visualizations
Урок 72.00:05:59
Plotting From Pandas DataFrames
Урок 73.00:10:34
Plotting From Pandas DataFrames 2
Урок 74.00:08:33
Plotting from Pandas DataFrames 3
Урок 75.00:06:37
Plotting from Pandas DataFrames 4
Урок 76.00:08:30
Plotting from Pandas DataFrames 5
Урок 77.00:08:29
Plotting from Pandas DataFrames 6
Урок 78.00:11:21
Plotting from Pandas DataFrames 7
Урок 79.00:10:10
Customizing Your Plots
Урок 80.00:09:42
Customizing Your Plots 2
Урок 81.00:04:15
Saving And Sharing Your Plots
Урок 82.00:02:30
Section Overview
Урок 83.00:06:42
Scikit-learn Introduction
Урок 84.00:05:41
Refresher: What Is Machine Learning?
Урок 85.00:06:14
Scikit-learn Cheatsheet
Урок 86.00:23:15
Typical scikit-learn Workflow
Урок 87.00:18:58
Optional: Debugging Warnings In Jupyter
Урок 88.00:08:38
Getting Your Data Ready: Splitting Your Data
Урок 89.00:05:04
Quick Tip: Clean, Transform, Reduce
Урок 90.00:16:55
Getting Your Data Ready: Convert Data To Numbers
Урок 91.00:12:23
Getting Your Data Ready: Handling Missing Values With Pandas
Урок 92.00:17:30
Getting Your Data Ready: Handling Missing Values With Scikit-learn
Урок 93.00:20:15
NEW: Choosing The Right Model For Your Data
Урок 94.00:11:22
NEW: Choosing The Right Model For Your Data 2 (Regression)
Урок 95.00:01:26
Quick Tip: How ML Algorithms Work
Урок 96.00:12:46
Choosing The Right Model For Your Data 3 (Classification)
Урок 97.00:06:46
Fitting A Model To The Data
Урок 98.00:08:25
Making Predictions With Our Model
Урок 99.00:08:34
predict() vs predict_proba()
Урок 100.00:08:49
NEW: Making Predictions With Our Model (Regression)
Урок 101.00:09:42
NEW: Evaluating A Machine Learning Model (Score) Part 1
Урок 102.00:06:48
NEW: Evaluating A Machine Learning Model (Score) Part 2
Урок 103.00:13:17
Evaluating A Machine Learning Model 2 (Cross Validation)
Урок 104.00:04:47
Evaluating A Classification Model 1 (Accuracy)
Урок 105.00:09:05
Evaluating A Classification Model 2 (ROC Curve)
Урок 106.00:07:45
Evaluating A Classification Model 3 (ROC Curve)
Урок 107.00:11:02
Evaluating A Classification Model 4 (Confusion Matrix)
Урок 108.00:14:23
NEW: Evaluating A Classification Model 5 (Confusion Matrix)
Урок 109.00:10:17
Evaluating A Classification Model 6 (Classification Report)
Урок 110.00:10:00
NEW: Evaluating A Regression Model 1 (R2 Score)
Урок 111.00:07:23
NEW: Evaluating A Regression Model 2 (MAE)
Урок 112.00:09:50
NEW: Evaluating A Regression Model 3 (MSE)
Урок 113.00:25:20
NEW: Evaluating A Model With Cross Validation and Scoring Parameter
Урок 114.00:14:03
NEW: Evaluating A Model With Scikit-learn Functions
Урок 115.00:11:17
Improving A Machine Learning Model
Урок 116.00:23:16
Tuning Hyperparameters
Урок 117.00:14:24
Tuning Hyperparameters 2
Урок 118.00:15:00
Tuning Hyperparameters 3
Урок 119.00:02:29
Quick Tip: Correlation Analysis
Урок 120.00:07:30
Saving And Loading A Model
Урок 121.00:06:21
Saving And Loading A Model 2
Урок 122.00:20:20
Putting It All Together
Урок 123.00:11:35
Putting It All Together 2
Урок 124.00:02:10
Section Overview
Урок 125.00:06:10
Project Overview
Урок 126.00:11:00
Project Environment Setup
Урок 127.00:04:53
Optional: Windows Project Environment Setup
Урок 128.00:12:07
Step 1~4 Framework Setup
Урок 129.00:09:05
Getting Our Tools Ready
Урок 130.00:08:34
Exploring Our Data
Урок 131.00:10:03
Finding Patterns
Урок 132.00:16:48
Finding Patterns 2
Урок 133.00:13:38
Finding Patterns 3
Урок 134.00:08:52
Preparing Our Data For Machine Learning
Урок 135.00:10:16
Choosing The Right Models
Урок 136.00:06:32
Experimenting With Machine Learning Models
Урок 137.00:13:50
Tuning/Improving Our Model
Урок 138.00:11:28
Tuning Hyperparameters
Урок 139.00:11:50
Tuning Hyperparameters 2
Урок 140.00:07:07
Tuning Hyperparameters 3
Урок 141.00:11:00
Evaluating Our Model
Урок 142.00:05:56
Evaluating Our Model 2
Урок 143.00:08:50
Evaluating Our Model 3
Урок 144.00:16:08
Finding The Most Important Features
Урок 145.00:09:14
Reviewing The Project
Урок 146.00:01:08
Section Overview
Урок 147.00:04:25
Project Overview
Урок 148.00:10:53
Project Environment Setup
Урок 149.00:08:37
Step 1~4 Framework Setup
Урок 150.00:14:17
Exploring Our Data
Урок 151.00:06:17
Exploring Our Data 2
Урок 152.00:15:25
Feature Engineering
Урок 153.00:15:39
Turning Data Into Numbers
Урок 154.00:12:50
Filling Missing Numerical Values
Урок 155.00:08:28
Filling Missing Categorical Values
Урок 156.00:07:17
Fitting A Machine Learning Model
Урок 157.00:10:01
Splitting Data
Урок 158.00:11:14
Custom Evaluation Function
Урок 159.00:10:37
Reducing Data
Урок 160.00:09:33
RandomizedSearchCV
Урок 161.00:08:12
Improving Hyperparameters
Урок 162.00:13:16
Preproccessing Our Data
Урок 163.00:09:18
Making Predictions
Урок 164.00:13:51
Feature Importance
Урок 165.00:03:25
Data Engineering Introduction
Урок 166.00:06:43
What Is Data?
Урок 167.00:04:21
What Is A Data Engineer?
Урок 168.00:05:37
What Is A Data Engineer 2?
Урок 169.00:05:04
What Is A Data Engineer 3?
Урок 170.00:03:23
What Is A Data Engineer 4?
Урок 171.00:06:51
Types Of Databases
Урок 172.00:10:55
Optional: OLTP Databases
Урок 173.00:04:23
Hadoop, HDFS and MapReduce
Урок 174.00:02:08
Apache Spark and Apache Flink
Урок 175.00:04:34
Kafka and Stream Processing
Урок 176.00:02:07
Section Overview
Урок 177.00:13:37
Deep Learning and Unstructured Data
Урок 178.00:07:18
Setting Up Google Colab
Урок 179.00:04:24
Google Colab Workspace
Урок 180.00:06:53
Uploading Project Data
Урок 181.00:04:41
Setting Up Our Data
Урок 182.00:01:33
Setting Up Our Data 2
Урок 183.00:12:44
Importing TensorFlow 2
Урок 184.00:03:40
Optional: TensorFlow 2.0 Default Issue
Урок 185.00:09:00
Using A GPU
Урок 186.00:04:28
Optional: GPU and Google Colab
Урок 187.00:06:50
Optional: Reloading Colab Notebook
Урок 188.00:12:05
Loading Our Data Labels
Урок 189.00:12:33
Preparing The Images
Урок 190.00:12:12
Turning Data Labels Into Numbers
Урок 191.00:09:19
Creating Our Own Validation Set
Урок 192.00:10:26
Preprocess Images
Урок 193.00:11:01
Preprocess Images 2
Урок 194.00:09:38
Turning Data Into Batches
Урок 195.00:17:55
Turning Data Into Batches 2
Урок 196.00:12:42
Visualizing Our Data
Урок 197.00:06:39
Preparing Our Inputs and Outputs
Урок 198.00:11:43
Building A Deep Learning Model
Урок 199.00:10:54
Building A Deep Learning Model 2
Урок 200.00:09:06
Building A Deep Learning Model 3
Урок 201.00:09:13
Building A Deep Learning Model 4
Урок 202.00:04:53
Summarizing Our Model
Урок 203.00:09:27
Evaluating Our Model
Урок 204.00:04:21
Preventing Overfitting
Урок 205.00:19:10
Training Your Deep Neural Network
Урок 206.00:07:31
Evaluating Performance With TensorBoard
Урок 207.00:15:05
Make And Transform Predictions
Урок 208.00:15:21
Transform Predictions To Text
Урок 209.00:14:47
Visualizing Model Predictions
Урок 210.00:15:53
Visualizing And Evaluate Model Predictions 2
Урок 211.00:10:40
Visualizing And Evaluate Model Predictions 3
Урок 212.00:13:35
Saving And Loading A Trained Model
Урок 213.00:15:03
Training Model On Full Dataset
Урок 214.00:16:55
Making Predictions On Test Images
Урок 215.00:14:15
Submitting Model to Kaggle
Урок 216.00:15:16
Making Predictions On Our Images
Урок 217.00:02:20
Section Overview
Урок 218.00:03:23
Communicating Your Work
Урок 219.00:02:59
Communicating With Managers
Урок 220.00:03:43
Communicating With Co-Workers
Урок 221.00:06:33
Weekend Project Principle
Урок 222.00:03:30
Communicating With Outside World
Урок 223.00:03:07
Storytelling
Урок 224.00:15:04
What If I Don't Have Enough Experience?
Урок 225.00:02:00
JTS: Learn to Learn
Урок 226.00:02:44
JTS: Start With Why
Урок 227.00:17:41
CWD: Git + Github
Урок 228.00:16:53
CWD: Git + Github 2
Урок 229.00:14:09
Contributing To Open Source
Урок 230.00:09:41
Contributing To Open Source 2
Урок 231.00:06:25
What Is A Programming Language
Урок 232.00:07:05
Python Interpreter
Урок 233.00:04:54
How To Run Python Code
Урок 234.00:01:29
Latest Version Of Python
Урок 235.00:07:44
Our First Python Program
Урок 236.00:06:41
Python 2 vs Python 3
Урок 237.00:02:10
Exercise: How Does Python Work?
Урок 238.00:02:06
Learning Python
Урок 239.00:04:47
Python Data Types
Урок 240.00:11:10
Numbers
Урок 241.00:04:30
Math Functions
Урок 242.00:04:08
DEVELOPER FUNDAMENTALS: I
Урок 243.00:03:11
Operator Precedence
Урок 244.00:04:03
Optional: bin() and complex
Урок 245.00:13:13
Variables
Урок 246.00:01:37
Expressions vs Statements
Урок 247.00:02:50
Augmented Assignment Operator
Урок 248.00:05:30
Strings
Урок 249.00:01:17
String Concatenation
Урок 250.00:03:04
Type Conversion
Урок 251.00:04:24
Escape Sequences
Урок 252.00:08:25
Formatted Strings
Урок 253.00:08:58
String Indexes
Урок 254.00:03:14
Immutability
Урок 255.00:10:04
Built-In Functions + Methods
Урок 256.00:03:22
Booleans
Урок 257.00:08:23
Exercise: Type Conversion
Урок 258.00:04:43
DEVELOPER FUNDAMENTALS: II
Урок 259.00:07:22
Exercise: Password Checker
Урок 260.00:05:02
Lists
Урок 261.00:07:49
List Slicing
Урок 262.00:04:12
Matrix
Урок 263.00:10:29
List Methods
Урок 264.00:04:25
List Methods 2
Урок 265.00:04:53
List Methods 3
Урок 266.00:05:58
Common List Patterns
Урок 267.00:02:42
List Unpacking
Урок 268.00:01:52
None
Урок 269.00:06:22
Dictionaries
Урок 270.00:02:41
DEVELOPER FUNDAMENTALS: III
Урок 271.00:03:38
Dictionary Keys
Урок 272.00:04:38
Dictionary Methods
Урок 273.00:07:05
Dictionary Methods 2
Урок 274.00:04:47
Tuples
Урок 275.00:03:15
Tuples 2
Урок 276.00:07:25
Sets
Урок 277.00:08:46
Sets 2
Урок 278.00:02:36
Breaking The Flow
Урок 279.00:13:19
Conditional Logic
Урок 280.00:04:39
Indentation In Python
Урок 281.00:05:19
Truthy vs Falsey
Урок 282.00:04:15
Ternary Operator
Урок 283.00:04:03
Short Circuiting
Урок 284.00:06:57
Logical Operators
Урок 285.00:07:48
Exercise: Logical Operators
Урок 286.00:07:37
is vs ==
Урок 287.00:07:02
For Loops
Урок 288.00:06:44
Iterables
Урок 289.00:03:24
Exercise: Tricky Counter
Урок 290.00:05:39
range()
Урок 291.00:04:38
enumerate()
Урок 292.00:06:29
While Loops
Урок 293.00:05:50
While Loops 2
Урок 294.00:04:16
break, continue, pass
Урок 295.00:08:49
Our First GUI
Урок 296.00:06:35
DEVELOPER FUNDAMENTALS: IV
Урок 297.00:03:55
Exercise: Find Duplicates
Урок 298.00:07:42
Functions
Урок 299.00:04:26
Parameters and Arguments
Урок 300.00:05:41
Default Parameters and Keyword Arguments
Урок 301.00:13:12
return
Урок 302.00:04:34
Methods vs Functions
Урок 303.00:03:48
Docstrings
Урок 304.00:04:39
Clean Code
Урок 305.00:07:57
*args and **kwargs
Урок 306.00:04:19
Exercise: Functions
Урок 307.00:03:39
Scope
Урок 308.00:06:56
Scope Rules
Урок 309.00:06:14
global Keyword
Урок 310.00:03:22
nonlocal Keyword
Урок 311.00:03:39
Why Do We Need Scope?
Урок 312.00:09:24
Pure Functions
Урок 313.00:06:31
map()
Урок 314.00:04:24
filter()
Урок 315.00:03:29
zip()
Урок 316.00:07:32
reduce()
Урок 317.00:08:38
List Comprehensions
Урок 318.00:06:27
Set Comprehensions
Урок 319.00:04:37
Exercise: Comprehensions
Урок 320.00:10:55
Modules in Python
Урок 321.00:08:20
Optional: PyCharm
Урок 322.00:10:46
Packages in Python
Урок 323.00:07:04
Different Ways To Import
Урок 324.00:02:45
Thank You
Thanks!