1. Урок 1. 00:06:00
    Course Outline
  2. Урок 2. 00:04:02
    Join Our Online Classroom!
  3. Урок 3. 00:03:49
    Your First Day
  4. Урок 4. 00:06:53
    What Is Machine Learning?
  5. Урок 5. 00:04:52
    AI/Machine Learning/Data Science
  6. Урок 6. 00:04:24
    ZTM Resources
  7. Урок 7. 00:06:17
    Exercise: Machine Learning Playground
  8. Урок 8. 00:06:04
    How Did We Get Here?
  9. Урок 9. 00:04:25
    Exercise: YouTube Recommendation Engine
  10. Урок 10. 00:04:42
    Types of Machine Learning
  11. Урок 11. 00:04:46
    What Is Machine Learning? Round 2
  12. Урок 12. 00:01:49
    Section Review
  13. Урок 13. 00:03:09
    Section Overview
  14. Урок 14. 00:02:39
    Introducing Our Framework
  15. Урок 15. 00:05:00
    6 Step Machine Learning Framework
  16. Урок 16. 00:10:33
    Types of Machine Learning Problems
  17. Урок 17. 00:04:52
    Types of Data
  18. Урок 18. 00:03:32
    Types of Evaluation
  19. Урок 19. 00:05:23
    Features In Data
  20. Урок 20. 00:05:59
    Modelling - Splitting Data
  21. Урок 21. 00:04:36
    Modelling - Picking the Model
  22. Урок 22. 00:03:18
    Modelling - Tuning
  23. Урок 23. 00:09:33
    Modelling - Comparison
  24. Урок 24. 00:03:36
    Experimentation
  25. Урок 25. 00:04:01
    Tools We Will Use
  26. Урок 26. 00:03:28
    The 2 Paths
  27. Урок 27. 00:01:10
    Section Overview
  28. Урок 28. 00:03:29
    Introducing Our Tools
  29. Урок 29. 00:02:36
    What is Conda?
  30. Урок 30. 00:04:31
    Conda Environments
  31. Урок 31. 00:17:27
    Mac Environment Setup
  32. Урок 32. 00:14:12
    Mac Environment Setup 2
  33. Урок 33. 00:05:18
    Windows Environment Setup
  34. Урок 34. 00:23:18
    Windows Environment Setup 2
  35. Урок 35. 00:10:21
    Jupyter Notebook Walkthrough
  36. Урок 36. 00:16:19
    Jupyter Notebook Walkthrough 2
  37. Урок 37. 00:08:11
    Jupyter Notebook Walkthrough 3
  38. Урок 38. 00:02:28
    Section Overview
  39. Урок 39. 00:04:30
    Pandas Introduction
  40. Урок 40. 00:13:22
    Series, Data Frames and CSVs
  41. Урок 41. 00:09:49
    Describing Data with Pandas
  42. Урок 42. 00:11:09
    Selecting and Viewing Data with Pandas
  43. Урок 43. 00:13:08
    Selecting and Viewing Data with Pandas Part 2
  44. Урок 44. 00:13:57
    Manipulating Data
  45. Урок 45. 00:09:58
    Manipulating Data 2
  46. Урок 46. 00:10:13
    Manipulating Data 3
  47. Урок 47. 00:07:44
    How To Download The Course Assignments
  48. Урок 48. 00:02:41
    Section Overview
  49. Урок 49. 00:05:18
    NumPy Introduction
  50. Урок 50. 00:14:06
    NumPy DataTypes and Attributes
  51. Урок 51. 00:09:23
    Creating NumPy Arrays
  52. Урок 52. 00:07:18
    NumPy Random Seed
  53. Урок 53. 00:09:36
    Viewing Arrays and Matrices
  54. Урок 54. 00:11:33
    Manipulating Arrays
  55. Урок 55. 00:09:45
    Manipulating Arrays 2
  56. Урок 56. 00:07:11
    Standard Deviation and Variance
  57. Урок 57. 00:07:27
    Reshape and Transpose
  58. Урок 58. 00:11:46
    Dot Product vs Element Wise
  59. Урок 59. 00:13:05
    Exercise: Nut Butter Store Sales
  60. Урок 60. 00:03:34
    Comparison Operators
  61. Урок 61. 00:06:20
    Sorting Arrays
  62. Урок 62. 00:07:38
    Turn Images Into NumPy Arrays
  63. Урок 63. 00:02:57
    Exercise: Imposter Syndrome
  64. Урок 64. 00:01:51
    Section Overview
  65. Урок 65. 00:05:17
    Matplotlib Introduction
  66. Урок 66. 00:11:37
    Importing And Using Matplotlib
  67. Урок 67. 00:09:20
    Anatomy Of A Matplotlib Figure
  68. Урок 68. 00:10:10
    Scatter Plot And Bar Plot
  69. Урок 69. 00:08:41
    Histograms And Subplots
  70. Урок 70. 00:04:16
    Subplots Option 2
  71. Урок 71. 00:01:49
    Quick Tip: Data Visualizations
  72. Урок 72. 00:05:59
    Plotting From Pandas DataFrames
  73. Урок 73. 00:10:34
    Plotting From Pandas DataFrames 2
  74. Урок 74. 00:08:33
    Plotting from Pandas DataFrames 3
  75. Урок 75. 00:06:37
    Plotting from Pandas DataFrames 4
  76. Урок 76. 00:08:30
    Plotting from Pandas DataFrames 5
  77. Урок 77. 00:08:29
    Plotting from Pandas DataFrames 6
  78. Урок 78. 00:11:21
    Plotting from Pandas DataFrames 7
  79. Урок 79. 00:10:10
    Customizing Your Plots
  80. Урок 80. 00:09:42
    Customizing Your Plots 2
  81. Урок 81. 00:04:15
    Saving And Sharing Your Plots
  82. Урок 82. 00:02:30
    Section Overview
  83. Урок 83. 00:06:42
    Scikit-learn Introduction
  84. Урок 84. 00:05:41
    Refresher: What Is Machine Learning?
  85. Урок 85. 00:06:14
    Scikit-learn Cheatsheet
  86. Урок 86. 00:23:15
    Typical scikit-learn Workflow
  87. Урок 87. 00:18:58
    Optional: Debugging Warnings In Jupyter
  88. Урок 88. 00:08:38
    Getting Your Data Ready: Splitting Your Data
  89. Урок 89. 00:05:04
    Quick Tip: Clean, Transform, Reduce
  90. Урок 90. 00:16:55
    Getting Your Data Ready: Convert Data To Numbers
  91. Урок 91. 00:12:23
    Getting Your Data Ready: Handling Missing Values With Pandas
  92. Урок 92. 00:17:30
    Getting Your Data Ready: Handling Missing Values With Scikit-learn
  93. Урок 93. 00:20:15
    NEW: Choosing The Right Model For Your Data
  94. Урок 94. 00:11:22
    NEW: Choosing The Right Model For Your Data 2 (Regression)
  95. Урок 95. 00:01:26
    Quick Tip: How ML Algorithms Work
  96. Урок 96. 00:12:46
    Choosing The Right Model For Your Data 3 (Classification)
  97. Урок 97. 00:06:46
    Fitting A Model To The Data
  98. Урок 98. 00:08:25
    Making Predictions With Our Model
  99. Урок 99. 00:08:34
    predict() vs predict_proba()
  100. Урок 100. 00:08:49
    NEW: Making Predictions With Our Model (Regression)
  101. Урок 101. 00:09:42
    NEW: Evaluating A Machine Learning Model (Score) Part 1
  102. Урок 102. 00:06:48
    NEW: Evaluating A Machine Learning Model (Score) Part 2
  103. Урок 103. 00:13:17
    Evaluating A Machine Learning Model 2 (Cross Validation)
  104. Урок 104. 00:04:47
    Evaluating A Classification Model 1 (Accuracy)
  105. Урок 105. 00:09:05
    Evaluating A Classification Model 2 (ROC Curve)
  106. Урок 106. 00:07:45
    Evaluating A Classification Model 3 (ROC Curve)
  107. Урок 107. 00:11:02
    Evaluating A Classification Model 4 (Confusion Matrix)
  108. Урок 108. 00:14:23
    NEW: Evaluating A Classification Model 5 (Confusion Matrix)
  109. Урок 109. 00:10:17
    Evaluating A Classification Model 6 (Classification Report)
  110. Урок 110. 00:10:00
    NEW: Evaluating A Regression Model 1 (R2 Score)
  111. Урок 111. 00:07:23
    NEW: Evaluating A Regression Model 2 (MAE)
  112. Урок 112. 00:09:50
    NEW: Evaluating A Regression Model 3 (MSE)
  113. Урок 113. 00:25:20
    NEW: Evaluating A Model With Cross Validation and Scoring Parameter
  114. Урок 114. 00:14:03
    NEW: Evaluating A Model With Scikit-learn Functions
  115. Урок 115. 00:11:17
    Improving A Machine Learning Model
  116. Урок 116. 00:23:16
    Tuning Hyperparameters
  117. Урок 117. 00:14:24
    Tuning Hyperparameters 2
  118. Урок 118. 00:15:00
    Tuning Hyperparameters 3
  119. Урок 119. 00:02:29
    Quick Tip: Correlation Analysis
  120. Урок 120. 00:07:30
    Saving And Loading A Model
  121. Урок 121. 00:06:21
    Saving And Loading A Model 2
  122. Урок 122. 00:20:20
    Putting It All Together
  123. Урок 123. 00:11:35
    Putting It All Together 2
  124. Урок 124. 00:02:10
    Section Overview
  125. Урок 125. 00:06:10
    Project Overview
  126. Урок 126. 00:11:00
    Project Environment Setup
  127. Урок 127. 00:04:53
    Optional: Windows Project Environment Setup
  128. Урок 128. 00:12:07
    Step 1~4 Framework Setup
  129. Урок 129. 00:09:05
    Getting Our Tools Ready
  130. Урок 130. 00:08:34
    Exploring Our Data
  131. Урок 131. 00:10:03
    Finding Patterns
  132. Урок 132. 00:16:48
    Finding Patterns 2
  133. Урок 133. 00:13:38
    Finding Patterns 3
  134. Урок 134. 00:08:52
    Preparing Our Data For Machine Learning
  135. Урок 135. 00:10:16
    Choosing The Right Models
  136. Урок 136. 00:06:32
    Experimenting With Machine Learning Models
  137. Урок 137. 00:13:50
    Tuning/Improving Our Model
  138. Урок 138. 00:11:28
    Tuning Hyperparameters
  139. Урок 139. 00:11:50
    Tuning Hyperparameters 2
  140. Урок 140. 00:07:07
    Tuning Hyperparameters 3
  141. Урок 141. 00:11:00
    Evaluating Our Model
  142. Урок 142. 00:05:56
    Evaluating Our Model 2
  143. Урок 143. 00:08:50
    Evaluating Our Model 3
  144. Урок 144. 00:16:08
    Finding The Most Important Features
  145. Урок 145. 00:09:14
    Reviewing The Project
  146. Урок 146. 00:01:08
    Section Overview
  147. Урок 147. 00:04:25
    Project Overview
  148. Урок 148. 00:10:53
    Project Environment Setup
  149. Урок 149. 00:08:37
    Step 1~4 Framework Setup
  150. Урок 150. 00:14:17
    Exploring Our Data
  151. Урок 151. 00:06:17
    Exploring Our Data 2
  152. Урок 152. 00:15:25
    Feature Engineering
  153. Урок 153. 00:15:39
    Turning Data Into Numbers
  154. Урок 154. 00:12:50
    Filling Missing Numerical Values
  155. Урок 155. 00:08:28
    Filling Missing Categorical Values
  156. Урок 156. 00:07:17
    Fitting A Machine Learning Model
  157. Урок 157. 00:10:01
    Splitting Data
  158. Урок 158. 00:11:14
    Custom Evaluation Function
  159. Урок 159. 00:10:37
    Reducing Data
  160. Урок 160. 00:09:33
    RandomizedSearchCV
  161. Урок 161. 00:08:12
    Improving Hyperparameters
  162. Урок 162. 00:13:16
    Preproccessing Our Data
  163. Урок 163. 00:09:18
    Making Predictions
  164. Урок 164. 00:13:51
    Feature Importance
  165. Урок 165. 00:03:25
    Data Engineering Introduction
  166. Урок 166. 00:06:43
    What Is Data?
  167. Урок 167. 00:04:21
    What Is A Data Engineer?
  168. Урок 168. 00:05:37
    What Is A Data Engineer 2?
  169. Урок 169. 00:05:04
    What Is A Data Engineer 3?
  170. Урок 170. 00:03:23
    What Is A Data Engineer 4?
  171. Урок 171. 00:06:51
    Types Of Databases
  172. Урок 172. 00:10:55
    Optional: OLTP Databases
  173. Урок 173. 00:04:23
    Hadoop, HDFS and MapReduce
  174. Урок 174. 00:02:08
    Apache Spark and Apache Flink
  175. Урок 175. 00:04:34
    Kafka and Stream Processing
  176. Урок 176. 00:02:07
    Section Overview
  177. Урок 177. 00:13:37
    Deep Learning and Unstructured Data
  178. Урок 178. 00:07:18
    Setting Up Google Colab
  179. Урок 179. 00:04:24
    Google Colab Workspace
  180. Урок 180. 00:06:53
    Uploading Project Data
  181. Урок 181. 00:04:41
    Setting Up Our Data
  182. Урок 182. 00:01:33
    Setting Up Our Data 2
  183. Урок 183. 00:12:44
    Importing TensorFlow 2
  184. Урок 184. 00:03:40
    Optional: TensorFlow 2.0 Default Issue
  185. Урок 185. 00:09:00
    Using A GPU
  186. Урок 186. 00:04:28
    Optional: GPU and Google Colab
  187. Урок 187. 00:06:50
    Optional: Reloading Colab Notebook
  188. Урок 188. 00:12:05
    Loading Our Data Labels
  189. Урок 189. 00:12:33
    Preparing The Images
  190. Урок 190. 00:12:12
    Turning Data Labels Into Numbers
  191. Урок 191. 00:09:19
    Creating Our Own Validation Set
  192. Урок 192. 00:10:26
    Preprocess Images
  193. Урок 193. 00:11:01
    Preprocess Images 2
  194. Урок 194. 00:09:38
    Turning Data Into Batches
  195. Урок 195. 00:17:55
    Turning Data Into Batches 2
  196. Урок 196. 00:12:42
    Visualizing Our Data
  197. Урок 197. 00:06:39
    Preparing Our Inputs and Outputs
  198. Урок 198. 00:11:43
    Building A Deep Learning Model
  199. Урок 199. 00:10:54
    Building A Deep Learning Model 2
  200. Урок 200. 00:09:06
    Building A Deep Learning Model 3
  201. Урок 201. 00:09:13
    Building A Deep Learning Model 4
  202. Урок 202. 00:04:53
    Summarizing Our Model
  203. Урок 203. 00:09:27
    Evaluating Our Model
  204. Урок 204. 00:04:21
    Preventing Overfitting
  205. Урок 205. 00:19:10
    Training Your Deep Neural Network
  206. Урок 206. 00:07:31
    Evaluating Performance With TensorBoard
  207. Урок 207. 00:15:05
    Make And Transform Predictions
  208. Урок 208. 00:15:21
    Transform Predictions To Text
  209. Урок 209. 00:14:47
    Visualizing Model Predictions
  210. Урок 210. 00:15:53
    Visualizing And Evaluate Model Predictions 2
  211. Урок 211. 00:10:40
    Visualizing And Evaluate Model Predictions 3
  212. Урок 212. 00:13:35
    Saving And Loading A Trained Model
  213. Урок 213. 00:15:03
    Training Model On Full Dataset
  214. Урок 214. 00:16:55
    Making Predictions On Test Images
  215. Урок 215. 00:14:15
    Submitting Model to Kaggle
  216. Урок 216. 00:15:16
    Making Predictions On Our Images
  217. Урок 217. 00:02:20
    Section Overview
  218. Урок 218. 00:03:23
    Communicating Your Work
  219. Урок 219. 00:02:59
    Communicating With Managers
  220. Урок 220. 00:03:43
    Communicating With Co-Workers
  221. Урок 221. 00:06:33
    Weekend Project Principle
  222. Урок 222. 00:03:30
    Communicating With Outside World
  223. Урок 223. 00:03:07
    Storytelling
  224. Урок 224. 00:15:04
    What If I Don't Have Enough Experience?
  225. Урок 225. 00:02:00
    JTS: Learn to Learn
  226. Урок 226. 00:02:44
    JTS: Start With Why
  227. Урок 227. 00:17:41
    CWD: Git + Github
  228. Урок 228. 00:16:53
    CWD: Git + Github 2
  229. Урок 229. 00:14:09
    Contributing To Open Source
  230. Урок 230. 00:09:41
    Contributing To Open Source 2
  231. Урок 231. 00:06:25
    What Is A Programming Language
  232. Урок 232. 00:07:05
    Python Interpreter
  233. Урок 233. 00:04:54
    How To Run Python Code
  234. Урок 234. 00:01:29
    Latest Version Of Python
  235. Урок 235. 00:07:44
    Our First Python Program
  236. Урок 236. 00:06:41
    Python 2 vs Python 3
  237. Урок 237. 00:02:10
    Exercise: How Does Python Work?
  238. Урок 238. 00:02:06
    Learning Python
  239. Урок 239. 00:04:47
    Python Data Types
  240. Урок 240. 00:11:10
    Numbers
  241. Урок 241. 00:04:30
    Math Functions
  242. Урок 242. 00:04:08
    DEVELOPER FUNDAMENTALS: I
  243. Урок 243. 00:03:11
    Operator Precedence
  244. Урок 244. 00:04:03
    Optional: bin() and complex
  245. Урок 245. 00:13:13
    Variables
  246. Урок 246. 00:01:37
    Expressions vs Statements
  247. Урок 247. 00:02:50
    Augmented Assignment Operator
  248. Урок 248. 00:05:30
    Strings
  249. Урок 249. 00:01:17
    String Concatenation
  250. Урок 250. 00:03:04
    Type Conversion
  251. Урок 251. 00:04:24
    Escape Sequences
  252. Урок 252. 00:08:25
    Formatted Strings
  253. Урок 253. 00:08:58
    String Indexes
  254. Урок 254. 00:03:14
    Immutability
  255. Урок 255. 00:10:04
    Built-In Functions + Methods
  256. Урок 256. 00:03:22
    Booleans
  257. Урок 257. 00:08:23
    Exercise: Type Conversion
  258. Урок 258. 00:04:43
    DEVELOPER FUNDAMENTALS: II
  259. Урок 259. 00:07:22
    Exercise: Password Checker
  260. Урок 260. 00:05:02
    Lists
  261. Урок 261. 00:07:49
    List Slicing
  262. Урок 262. 00:04:12
    Matrix
  263. Урок 263. 00:10:29
    List Methods
  264. Урок 264. 00:04:25
    List Methods 2
  265. Урок 265. 00:04:53
    List Methods 3
  266. Урок 266. 00:05:58
    Common List Patterns
  267. Урок 267. 00:02:42
    List Unpacking
  268. Урок 268. 00:01:52
    None
  269. Урок 269. 00:06:22
    Dictionaries
  270. Урок 270. 00:02:41
    DEVELOPER FUNDAMENTALS: III
  271. Урок 271. 00:03:38
    Dictionary Keys
  272. Урок 272. 00:04:38
    Dictionary Methods
  273. Урок 273. 00:07:05
    Dictionary Methods 2
  274. Урок 274. 00:04:47
    Tuples
  275. Урок 275. 00:03:15
    Tuples 2
  276. Урок 276. 00:07:25
    Sets
  277. Урок 277. 00:08:46
    Sets 2
  278. Урок 278. 00:02:36
    Breaking The Flow
  279. Урок 279. 00:13:19
    Conditional Logic
  280. Урок 280. 00:04:39
    Indentation In Python
  281. Урок 281. 00:05:19
    Truthy vs Falsey
  282. Урок 282. 00:04:15
    Ternary Operator
  283. Урок 283. 00:04:03
    Short Circuiting
  284. Урок 284. 00:06:57
    Logical Operators
  285. Урок 285. 00:07:48
    Exercise: Logical Operators
  286. Урок 286. 00:07:37
    is vs ==
  287. Урок 287. 00:07:02
    For Loops
  288. Урок 288. 00:06:44
    Iterables
  289. Урок 289. 00:03:24
    Exercise: Tricky Counter
  290. Урок 290. 00:05:39
    range()
  291. Урок 291. 00:04:38
    enumerate()
  292. Урок 292. 00:06:29
    While Loops
  293. Урок 293. 00:05:50
    While Loops 2
  294. Урок 294. 00:04:16
    break, continue, pass
  295. Урок 295. 00:08:49
    Our First GUI
  296. Урок 296. 00:06:35
    DEVELOPER FUNDAMENTALS: IV
  297. Урок 297. 00:03:55
    Exercise: Find Duplicates
  298. Урок 298. 00:07:42
    Functions
  299. Урок 299. 00:04:26
    Parameters and Arguments
  300. Урок 300. 00:05:41
    Default Parameters and Keyword Arguments
  301. Урок 301. 00:13:12
    return
  302. Урок 302. 00:04:34
    Methods vs Functions
  303. Урок 303. 00:03:48
    Docstrings
  304. Урок 304. 00:04:39
    Clean Code
  305. Урок 305. 00:07:57
    *args and **kwargs
  306. Урок 306. 00:04:19
    Exercise: Functions
  307. Урок 307. 00:03:39
    Scope
  308. Урок 308. 00:06:56
    Scope Rules
  309. Урок 309. 00:06:14
    global Keyword
  310. Урок 310. 00:03:22
    nonlocal Keyword
  311. Урок 311. 00:03:39
    Why Do We Need Scope?
  312. Урок 312. 00:09:24
    Pure Functions
  313. Урок 313. 00:06:31
    map()
  314. Урок 314. 00:04:24
    filter()
  315. Урок 315. 00:03:29
    zip()
  316. Урок 316. 00:07:32
    reduce()
  317. Урок 317. 00:08:38
    List Comprehensions
  318. Урок 318. 00:06:27
    Set Comprehensions
  319. Урок 319. 00:04:37
    Exercise: Comprehensions
  320. Урок 320. 00:10:55
    Modules in Python
  321. Урок 321. 00:08:20
    Optional: PyCharm
  322. Урок 322. 00:10:46
    Packages in Python
  323. Урок 323. 00:07:04
    Different Ways To Import
  324. Урок 324. 00:02:45
    Thank You