1. Урок 1.00:02:42
    Introduction
  2. Урок 2.00:02:11
    Udemy 101: Getting the Most From This Course
  3. Урок 3.00:10:44
    [Activity] WINDOWS: Installing and Using Anaconda & Course Materials
  4. Урок 4.00:08:18
    [Activity] MAC: Installing and Using Anaconda & Course Materials
  5. Урок 5.00:09:12
    [Activity] LINUX: Installing and Using Anaconda & Course Materials
  6. Урок 6.00:05:00
    Python Basics, Part 1 [Optional]
  7. Урок 7.00:05:18
    [Activity] Python Basics, Part 2 [Optional]
  8. Урок 8.00:02:47
    [Activity] Python Basics, Part 3 [Optional]
  9. Урок 9.00:04:03
    [Activity] Python Basics, Part 4 [Optional]
  10. Урок 10.00:10:09
    Introducing the Pandas Library [Optional]
  11. Урок 11.00:06:59
    Types of Data
  12. Урок 12.00:05:27
    Mean, Median, Mode
  13. Урок 13.00:08:22
    [Activity] Using mean, median, and mode in Python
  14. Урок 14.00:11:13
    [Activity] Variation and Standard Deviation
  15. Урок 15.00:03:28
    Probability Density Function; Probability Mass Function
  16. Урок 16.00:07:46
    Common Data Distributions
  17. Урок 17.00:12:34
    [Activity] Percentiles and Moments
  18. Урок 18.00:13:47
    [Activity] A Crash Course in matplotlib
  19. Урок 19.00:17:31
    [Activity] Advanced Visualization with Seaborn
  20. Урок 20.00:11:32
    [Activity] Covariance and Correlation
  21. Урок 21.00:16:05
    [Exercise] Conditional Probability
  22. Урок 22.00:02:21
    Exercise Solution: Conditional Probability of Purchase by Age
  23. Урок 23.00:05:24
    Bayes' Theorem
  24. Урок 24.00:11:02
    [Activity] Linear Regression
  25. Урок 25.00:08:05
    [Activity] Polynomial Regression
  26. Урок 26.00:11:27
    [Activity] Multiple Regression, and Predicting Car Prices
  27. Урок 27.00:04:37
    Multi-Level Models
  28. Урок 28.00:08:58
    Supervised vs. Unsupervised Learning, and Train/Test
  29. Урок 29.00:05:48
    [Activity] Using Train/Test to Prevent Overfitting a Polynomial Regression
  30. Урок 30.00:04:00
    Bayesian Methods: Concepts
  31. Урок 31.00:08:06
    [Activity] Implementing a Spam Classifier with Naive Bayes
  32. Урок 32.00:07:24
    K-Means Clustering
  33. Урок 33.00:05:15
    [Activity] Clustering people based on income and age
  34. Урок 34.00:03:10
    Measuring Entropy
  35. Урок 35.00:00:23
    [Activity] WINDOWS: Installing Graphviz
  36. Урок 36.00:01:17
    [Activity] MAC: Installing Graphviz
  37. Урок 37.00:00:55
    [Activity] LINUX: Installing Graphviz
  38. Урок 38.00:08:44
    Decision Trees: Concepts
  39. Урок 39.00:09:48
    [Activity] Decision Trees: Predicting Hiring Decisions
  40. Урок 40.00:06:00
    Ensemble Learning
  41. Урок 41.00:15:30
    [Activity] XGBoost
  42. Урок 42.00:04:28
    Support Vector Machines (SVM) Overview
  43. Урок 43.00:09:30
    [Activity] Using SVM to cluster people using scikit-learn
  44. Урок 44.00:07:58
    User-Based Collaborative Filtering
  45. Урок 45.00:08:16
    Item-Based Collaborative Filtering
  46. Урок 46.00:09:09
    [Activity] Finding Movie Similarities
  47. Урок 47.00:08:00
    [Activity] Improving the Results of Movie Similarities
  48. Урок 48.00:10:23
    [Activity] Making Movie Recommendations to People
  49. Урок 49.00:05:30
    [Exercise] Improve the recommender's results
  50. Урок 50.00:03:45
    K-Nearest-Neighbors: Concepts
  51. Урок 51.00:12:30
    [Activity] Using KNN to predict a rating for a movie
  52. Урок 52.00:05:45
    Dimensionality Reduction; Principal Component Analysis
  53. Урок 53.00:09:06
    [Activity] PCA Example with the Iris data set
  54. Урок 54.00:09:06
    Data Warehousing Overview: ETL and ELT
  55. Урок 55.00:12:45
    Reinforcement Learning
  56. Урок 56.00:12:57
    [Activity] Reinforcement Learning & Q-Learning with Gym
  57. Урок 57.00:05:18
    Understanding a Confusion Matrix
  58. Урок 58.00:06:41
    Measuring Classifiers (Precision, Recall, F1, ROC, AUC)
  59. Урок 59.00:06:16
    Bias/Variance Tradeoff
  60. Урок 60.00:10:56
    [Activity] K-Fold Cross-Validation to avoid overfitting
  61. Урок 61.00:07:11
    Data Cleaning and Normalization
  62. Урок 62.00:10:57
    [Activity] Cleaning web log data
  63. Урок 63.00:03:23
    Normalizing numerical data
  64. Урок 64.00:06:22
    [Activity] Detecting outliers
  65. Урок 65.00:06:04
    Feature Engineering and the Curse of Dimensionality
  66. Урок 66.00:07:49
    Imputation Techniques for Missing Data
  67. Урок 67.00:05:36
    Handling Unbalanced Data: Oversampling, Undersampling, and SMOTE
  68. Урок 68.00:07:52
    Binning, Transforming, Encoding, Scaling, and Shuffling
  69. Урок 69.00:07:00
    [Activity] Installing Spark - Part 1
  70. Урок 70.00:07:21
    [Activity] Installing Spark - Part 2
  71. Урок 71.00:09:11
    Spark Introduction
  72. Урок 72.00:11:43
    Spark and the Resilient Distributed Dataset (RDD)
  73. Урок 73.00:05:10
    Introducing MLLib
  74. Урок 74.00:16:16
    Introduction to Decision Trees in Spark
  75. Урок 75.00:11:24
    [Activity] K-Means Clustering in Spark
  76. Урок 76.00:06:44
    TF / IDF
  77. Урок 77.00:08:22
    [Activity] Searching Wikipedia with Spark
  78. Урок 78.00:08:08
    [Activity] Using the Spark 2.0 DataFrame API for MLLib
  79. Урок 79.00:08:43
    Deploying Models to Real-Time Systems
  80. Урок 80.00:08:24
    A/B Testing Concepts
  81. Урок 81.00:06:00
    T-Tests and P-Values
  82. Урок 82.00:06:05
    [Activity] Hands-on With T-Tests
  83. Урок 83.00:03:25
    Determining How Long to Run an Experiment
  84. Урок 84.00:09:27
    A/B Test Gotchas
  85. Урок 85.00:11:44
    Deep Learning Pre-Requisites
  86. Урок 86.00:11:15
    The History of Artificial Neural Networks
  87. Урок 87.00:12:01
    [Activity] Deep Learning in the Tensorflow Playground
  88. Урок 88.00:09:30
    Deep Learning Details
  89. Урок 89.00:11:30
    Introducing Tensorflow
  90. Урок 90.00:13:12
    [Activity] Using Tensorflow, Part 1
  91. Урок 91.00:12:04
    [Activity] Using Tensorflow, Part 2
  92. Урок 92.00:13:34
    [Activity] Introducing Keras
  93. Урок 93.00:12:06
    [Activity] Using Keras to Predict Political Affiliations
  94. Урок 94.00:11:29
    Convolutional Neural Networks (CNN's)
  95. Урок 95.00:08:03
    [Activity] Using CNN's for handwriting recognition
  96. Урок 96.00:11:03
    Recurrent Neural Networks (RNN's)
  97. Урок 97.00:09:38
    [Activity] Using a RNN for sentiment analysis
  98. Урок 98.00:12:15
    [Activity] Transfer Learning
  99. Урок 99.00:04:40
    Tuning Neural Networks: Learning Rate and Batch Size Hyperparameters
  100. Урок 100.00:06:22
    Deep Learning Regularization with Dropout and Early Stopping
  101. Урок 101.00:11:03
    The Ethics of Deep Learning
  102. Урок 102.00:01:45
    Learning More about Deep Learning
  103. Урок 103.00:06:20
    Your final project assignment
  104. Урок 104.00:10:27
    Final project review
  105. Урок 105.00:03:00
    More to Explore