-
Урок 1.
00:02:42
Introduction
-
Урок 2.
00:02:11
Udemy 101: Getting the Most From This Course
-
Урок 3.
00:10:44
[Activity] WINDOWS: Installing and Using Anaconda & Course Materials
-
Урок 4.
00:08:18
[Activity] MAC: Installing and Using Anaconda & Course Materials
-
Урок 5.
00:09:12
[Activity] LINUX: Installing and Using Anaconda & Course Materials
-
Урок 6.
00:05:00
Python Basics, Part 1 [Optional]
-
Урок 7.
00:05:18
[Activity] Python Basics, Part 2 [Optional]
-
Урок 8.
00:02:47
[Activity] Python Basics, Part 3 [Optional]
-
Урок 9.
00:04:03
[Activity] Python Basics, Part 4 [Optional]
-
Урок 10.
00:10:09
Introducing the Pandas Library [Optional]
-
Урок 11.
00:06:59
Types of Data
-
Урок 12.
00:05:27
Mean, Median, Mode
-
Урок 13.
00:08:22
[Activity] Using mean, median, and mode in Python
-
Урок 14.
00:11:13
[Activity] Variation and Standard Deviation
-
Урок 15.
00:03:28
Probability Density Function; Probability Mass Function
-
Урок 16.
00:07:46
Common Data Distributions
-
Урок 17.
00:12:34
[Activity] Percentiles and Moments
-
Урок 18.
00:13:47
[Activity] A Crash Course in matplotlib
-
Урок 19.
00:17:31
[Activity] Advanced Visualization with Seaborn
-
Урок 20.
00:11:32
[Activity] Covariance and Correlation
-
Урок 21.
00:16:05
[Exercise] Conditional Probability
-
Урок 22.
00:02:21
Exercise Solution: Conditional Probability of Purchase by Age
-
Урок 23.
00:05:24
Bayes' Theorem
-
Урок 24.
00:11:02
[Activity] Linear Regression
-
Урок 25.
00:08:05
[Activity] Polynomial Regression
-
Урок 26.
00:11:27
[Activity] Multiple Regression, and Predicting Car Prices
-
Урок 27.
00:04:37
Multi-Level Models
-
Урок 28.
00:08:58
Supervised vs. Unsupervised Learning, and Train/Test
-
Урок 29.
00:05:48
[Activity] Using Train/Test to Prevent Overfitting a Polynomial Regression
-
Урок 30.
00:04:00
Bayesian Methods: Concepts
-
Урок 31.
00:08:06
[Activity] Implementing a Spam Classifier with Naive Bayes
-
Урок 32.
00:07:24
K-Means Clustering
-
Урок 33.
00:05:15
[Activity] Clustering people based on income and age
-
Урок 34.
00:03:10
Measuring Entropy
-
Урок 35.
00:00:23
[Activity] WINDOWS: Installing Graphviz
-
Урок 36.
00:01:17
[Activity] MAC: Installing Graphviz
-
Урок 37.
00:00:55
[Activity] LINUX: Installing Graphviz
-
Урок 38.
00:08:44
Decision Trees: Concepts
-
Урок 39.
00:09:48
[Activity] Decision Trees: Predicting Hiring Decisions
-
Урок 40.
00:06:00
Ensemble Learning
-
Урок 41.
00:15:30
[Activity] XGBoost
-
Урок 42.
00:04:28
Support Vector Machines (SVM) Overview
-
Урок 43.
00:09:30
[Activity] Using SVM to cluster people using scikit-learn
-
Урок 44.
00:07:58
User-Based Collaborative Filtering
-
Урок 45.
00:08:16
Item-Based Collaborative Filtering
-
Урок 46.
00:09:09
[Activity] Finding Movie Similarities
-
Урок 47.
00:08:00
[Activity] Improving the Results of Movie Similarities
-
Урок 48.
00:10:23
[Activity] Making Movie Recommendations to People
-
Урок 49.
00:05:30
[Exercise] Improve the recommender's results
-
Урок 50.
00:03:45
K-Nearest-Neighbors: Concepts
-
Урок 51.
00:12:30
[Activity] Using KNN to predict a rating for a movie
-
Урок 52.
00:05:45
Dimensionality Reduction; Principal Component Analysis
-
Урок 53.
00:09:06
[Activity] PCA Example with the Iris data set
-
Урок 54.
00:09:06
Data Warehousing Overview: ETL and ELT
-
Урок 55.
00:12:45
Reinforcement Learning
-
Урок 56.
00:12:57
[Activity] Reinforcement Learning & Q-Learning with Gym
-
Урок 57.
00:05:18
Understanding a Confusion Matrix
-
Урок 58.
00:06:41
Measuring Classifiers (Precision, Recall, F1, ROC, AUC)
-
Урок 59.
00:06:16
Bias/Variance Tradeoff
-
Урок 60.
00:10:56
[Activity] K-Fold Cross-Validation to avoid overfitting
-
Урок 61.
00:07:11
Data Cleaning and Normalization
-
Урок 62.
00:10:57
[Activity] Cleaning web log data
-
Урок 63.
00:03:23
Normalizing numerical data
-
Урок 64.
00:06:22
[Activity] Detecting outliers
-
Урок 65.
00:06:04
Feature Engineering and the Curse of Dimensionality
-
Урок 66.
00:07:49
Imputation Techniques for Missing Data
-
Урок 67.
00:05:36
Handling Unbalanced Data: Oversampling, Undersampling, and SMOTE
-
Урок 68.
00:07:52
Binning, Transforming, Encoding, Scaling, and Shuffling
-
Урок 69.
00:07:00
[Activity] Installing Spark - Part 1
-
Урок 70.
00:07:21
[Activity] Installing Spark - Part 2
-
Урок 71.
00:09:11
Spark Introduction
-
Урок 72.
00:11:43
Spark and the Resilient Distributed Dataset (RDD)
-
Урок 73.
00:05:10
Introducing MLLib
-
Урок 74.
00:16:16
Introduction to Decision Trees in Spark
-
Урок 75.
00:11:24
[Activity] K-Means Clustering in Spark
-
Урок 76.
00:06:44
TF / IDF
-
Урок 77.
00:08:22
[Activity] Searching Wikipedia with Spark
-
Урок 78.
00:08:08
[Activity] Using the Spark 2.0 DataFrame API for MLLib
-
Урок 79.
00:08:43
Deploying Models to Real-Time Systems
-
Урок 80.
00:08:24
A/B Testing Concepts
-
Урок 81.
00:06:00
T-Tests and P-Values
-
Урок 82.
00:06:05
[Activity] Hands-on With T-Tests
-
Урок 83.
00:03:25
Determining How Long to Run an Experiment
-
Урок 84.
00:09:27
A/B Test Gotchas
-
Урок 85.
00:11:44
Deep Learning Pre-Requisites
-
Урок 86.
00:11:15
The History of Artificial Neural Networks
-
Урок 87.
00:12:01
[Activity] Deep Learning in the Tensorflow Playground
-
Урок 88.
00:09:30
Deep Learning Details
-
Урок 89.
00:11:30
Introducing Tensorflow
-
Урок 90.
00:13:12
[Activity] Using Tensorflow, Part 1
-
Урок 91.
00:12:04
[Activity] Using Tensorflow, Part 2
-
Урок 92.
00:13:34
[Activity] Introducing Keras
-
Урок 93.
00:12:06
[Activity] Using Keras to Predict Political Affiliations
-
Урок 94.
00:11:29
Convolutional Neural Networks (CNN's)
-
Урок 95.
00:08:03
[Activity] Using CNN's for handwriting recognition
-
Урок 96.
00:11:03
Recurrent Neural Networks (RNN's)
-
Урок 97.
00:09:38
[Activity] Using a RNN for sentiment analysis
-
Урок 98.
00:12:15
[Activity] Transfer Learning
-
Урок 99.
00:04:40
Tuning Neural Networks: Learning Rate and Batch Size Hyperparameters
-
Урок 100.
00:06:22
Deep Learning Regularization with Dropout and Early Stopping
-
Урок 101.
00:11:03
The Ethics of Deep Learning
-
Урок 102.
00:01:45
Learning More about Deep Learning
-
Урок 103.
00:06:20
Your final project assignment
-
Урок 104.
00:10:27
Final project review
-
Урок 105.
00:03:00
More to Explore