-
Урок 1.
00:03:34
Introduction to the Course
-
Урок 2.
00:00:37
Course Help and Welcome
-
Урок 3.
00:11:15
Python Environment Setup
-
Урок 4.
00:13:49
Jupyter Notebooks
-
Урок 5.
00:09:52
Optional: Virtual Environments
-
Урок 6.
00:00:18
Welcome to the Python Crash Course Section!
-
Урок 7.
00:01:27
Introduction to Python Crash Course
-
Урок 8.
00:19:31
Python Crash Course - Part 1
-
Урок 9.
00:15:15
Python Crash Course - Part 2
-
Урок 10.
00:16:40
Python Crash Course - Part 3
-
Урок 11.
00:15:38
Python Crash Course - Part 4
-
Урок 12.
00:03:36
Python Crash Course Exercises - Overview
-
Урок 13.
00:11:57
Python Crash Course Exercises - Solutions
-
Урок 14.
00:00:12
Welcome to the NumPy Section!
-
Урок 15.
00:02:14
Introduction to Numpy
-
Урок 16.
00:16:51
Numpy Arrays
-
Урок 17.
00:18:24
Numpy Array Indexing
-
Урок 18.
00:07:05
Numpy Operations
-
Урок 19.
00:02:47
Numpy Exercises Overview
-
Урок 20.
00:15:33
Numpy Exercises Solutions
-
Урок 21.
00:00:15
Welcome to the Pandas Section!
-
Урок 22.
00:01:45
Introduction to Pandas
-
Урок 23.
00:10:40
Series
-
Урок 24.
00:15:32
DataFrames - Part 1
-
Урок 25.
00:17:11
DataFrames - Part 2
-
Урок 26.
00:09:13
DataFrames - Part 3
-
Урок 27.
00:06:20
Missing Data
-
Урок 28.
00:06:50
Groupby
-
Урок 29.
00:08:57
Merging Joining and Concatenating
-
Урок 30.
00:12:05
Operations
-
Урок 31.
00:14:01
Data Input and Output
-
Урок 32.
00:01:56
SF Salaries Exercise Overview
-
Урок 33.
00:15:27
SF Salaries Solutions
-
Урок 34.
00:02:12
Ecommerce Purchases Exercise Overview
-
Урок 35.
00:15:14
Ecommerce Purchases Exercise Solutions
-
Урок 36.
00:00:23
Welcome to the Data Visualization Section!
-
Урок 37.
00:03:03
Introduction to Matplotlib
-
Урок 38.
00:16:59
Matplotlib Part 1
-
Урок 39.
00:15:52
Matplotlib Part 2
-
Урок 40.
00:11:53
Matplotlib Part 3
-
Урок 41.
00:01:48
Matplotlib Exercises Overview
-
Урок 42.
00:10:20
Matplotlib Exercises - Solutions
-
Урок 43.
00:02:59
Introduction to Seaborn
-
Урок 44.
00:18:22
Distribution Plots
-
Урок 45.
00:17:19
Categorical Plots
-
Урок 46.
00:10:15
Matrix Plots
-
Урок 47.
00:08:31
Grids
-
Урок 48.
00:07:15
Regression Plots
-
Урок 49.
00:08:22
Style and Color
-
Урок 50.
00:01:54
Seaborn Exercise Overview
-
Урок 51.
00:07:09
Seaborn Exercise Solutions
-
Урок 52.
00:13:28
Pandas Built-in Data Visualization
-
Урок 53.
00:01:24
Pandas Data Visualization Exercise
-
Урок 54.
00:08:56
Pandas Data Visualization Exercise- Solutions
-
Урок 55.
00:03:23
Introduction to Plotly and Cufflinks
-
Урок 56.
00:18:39
Plotly and Cufflinks
-
Урок 57.
00:00:59
Introduction to Geographical Plotting
-
Урок 58.
00:19:27
Choropleth Maps - Part 1 - USA
-
Урок 59.
00:06:54
Choropleth Maps - Part 2 - World
-
Урок 60.
00:03:13
Choropleth Exercises
-
Урок 61.
00:10:02
Choropleth Exercises - Solutions
-
Урок 62.
00:00:18
Welcome to the Data Capstone Projects!
-
Урок 63.
00:02:08
911 Calls Project Overview
-
Урок 64.
00:14:30
911 Calls Solutions - Part 1
-
Урок 65.
00:17:38
911 Calls Solutions - Part 2
-
Урок 66.
00:03:07
Finance Data Project Overview
-
Урок 67.
00:16:14
Finance Project - Solutions Part 1
-
Урок 68.
00:18:12
Finance Project - Solutions Part 2
-
Урок 69.
00:06:25
Finance Project - Solutions Part 3
-
Урок 70.
00:00:32
Welcome to the Machine Learning Section!
-
Урок 71.
00:08:22
Supervised Learning Overview
-
Урок 72.
00:16:38
Evaluating Performance - Classification Error Metrics
-
Урок 73.
00:05:37
Evaluating Performance - Regression Error Metrics
-
Урок 74.
00:09:28
Machine Learning with Python
-
Урок 75.
00:04:34
Linear Regression Theory
-
Урок 76.
00:18:17
Linear Regression with Python - Part 1
-
Урок 77.
00:07:06
Linear Regression with Python - Part 2
-
Урок 78.
00:02:32
Linear Regression Project Overview
-
Урок 79.
00:18:44
Linear Regression Project Solution
-
Урок 80.
00:06:26
Bias Variance Trade-Off
-
Урок 81.
00:11:54
Logistic Regression Theory
-
Урок 82.
00:17:44
Logistic Regression with Python - Part 1
-
Урок 83.
00:16:58
Logistic Regression with Python - Part 2
-
Урок 84.
00:08:16
Logistic Regression with Python - Part 3
-
Урок 85.
00:01:37
Logistic Regression Project Overview
-
Урок 86.
00:11:06
Logistic Regression Project Solutions
-
Урок 87.
00:05:40
KNN Theory
-
Урок 88.
00:19:40
KNN with Python
-
Урок 89.
00:01:13
KNN Project Overview
-
Урок 90.
00:14:15
KNN Project Solutions
-
Урок 91.
00:06:54
Introduction to Tree Methods
-
Урок 92.
00:13:58
Decision Trees and Random Forest with Python
-
Урок 93.
00:03:11
Decision Trees and Random Forest Project Overview
-
Урок 94.
00:12:15
Decision Trees and Random Forest Solutions Part 1
-
Урок 95.
00:08:47
Decision Trees and Random Forest Solutions Part 2
-
Урок 96.
00:04:37
SVM Theory
-
Урок 97.
00:17:53
Support Vector Machines with Python
-
Урок 98.
00:02:22
SVM Project Overview
-
Урок 99.
00:10:10
SVM Project Solutions
-
Урок 100.
00:05:16
K Means Algorithm Theory
-
Урок 101.
00:12:36
K Means with Python
-
Урок 102.
00:02:54
K Means Project Overview
-
Урок 103.
00:16:39
K Means Project Solutions
-
Урок 104.
00:03:27
Principal Component Analysis
-
Урок 105.
00:17:00
PCA with Python
-
Урок 106.
00:04:14
Recommender Systems
-
Урок 107.
00:13:38
Recommender Systems with Python - Part 1
-
Урок 108.
00:13:22
Recommender Systems with Python - Part 2
-
Урок 109.
00:05:08
Natural Language Processing Theory
-
Урок 110.
00:16:03
NLP with Python - Part 1
-
Урок 111.
00:18:48
NLP with Python - Part 2
-
Урок 112.
00:17:31
NLP with Python - Part 3
-
Урок 113.
00:02:05
NLP Project Overview
-
Урок 114.
00:19:27
NLP Project Solutions
-
Урок 115.
00:00:22
Welcome to the Deep Learning Section!
-
Урок 116.
00:02:16
Introduction to Artificial Neural Networks (ANN)
-
Урок 117.
00:10:40
Perceptron Model
-
Урок 118.
00:07:20
Neural Networks
-
Урок 119.
00:10:40
Activation Functions
-
Урок 120.
00:10:35
Multi-Class Classification Considerations
-
Урок 121.
00:18:14
Cost Functions and Gradient Descent
-
Урок 122.
00:14:48
Backpropagation
-
Урок 123.
00:02:14
TensorFlow vs Keras
-
Урок 124.
00:10:50
TF Syntax Basics - Part One - Preparing the Data
-
Урок 125.
00:14:00
TF Syntax Basics - Part Two - Creating and Training the Model
-
Урок 126.
00:12:57
TF Syntax Basics - Part Three - Model Evaluation
-
Урок 127.
00:18:51
TF Regression Code Along - Exploratory Data Analysis
-
Урок 128.
00:13:16
TF Regression Code Along - Exploratory Data Analysis - Continued
-
Урок 129.
00:08:43
TF Regression Code Along - Data Preprocessing and Creating a Model
-
Урок 130.
00:11:24
TF Regression Code Along - Model Evaluation and Predictions
-
Урок 131.
00:08:06
TF Classification Code Along - EDA and Preprocessing
-
Урок 132.
00:16:51
TF Classification - Dealing with Overfitting and Evaluation
-
Урок 133.
00:01:41
TensorFlow 2.0 Project Options Overview
-
Урок 134.
00:07:42
TensorFlow 2.0 Project Notebook Overview
-
Урок 135.
00:20:36
Keras Project Solutions - Dealing with Missing Data
-
Урок 136.
00:14:47
Keras Project Solutions - Dealing with Missing Data - Part Two
-
Урок 137.
00:12:03
Keras Project Solutions - Categorical Data
-
Урок 138.
00:17:24
Keras Project Solutions - Data PreProcessing
-
Урок 139.
00:03:46
Keras Project Solutions - Data PreProcessing
-
Урок 140.
00:03:58
Keras Project Solutions - Creating and Training a Model
-
Урок 141.
00:09:43
Keras Project Solutions - Model Evaluation
-
Урок 142.
00:18:23
Tensorboard
-
Урок 143.
00:00:24
Welcome to the Big Data Section!
-
Урок 144.
00:05:32
Big Data Overview
-
Урок 145.
00:09:01
Spark Overview
-
Урок 146.
00:04:14
AWS Account Set-Up
-
Урок 147.
00:16:19
EC2 Instance Set-Up
-
Урок 148.
00:04:50
SSH with Mac or Linux
-
Урок 149.
00:23:49
PySpark Setup
-
Урок 150.
00:05:27
Lambda Expressions Review
-
Урок 151.
00:08:18
Introduction to Spark and Python
-
Урок 152.
00:23:10
RDD Transformations and Actions