Урок 1.00:03:34
Introduction to the Course
Урок 2.00:00:37
Course Help and Welcome
Урок 3.00:11:15
Python Environment Setup
Урок 4.00:13:49
Jupyter Notebooks
Урок 5.00:09:52
Optional: Virtual Environments
Урок 6.00:00:18
Welcome to the Python Crash Course Section!
Урок 7.00:01:27
Introduction to Python Crash Course
Урок 8.00:19:31
Python Crash Course - Part 1
Урок 9.00:15:15
Python Crash Course - Part 2
Урок 10.00:16:40
Python Crash Course - Part 3
Урок 11.00:15:38
Python Crash Course - Part 4
Урок 12.00:03:36
Python Crash Course Exercises - Overview
Урок 13.00:11:57
Python Crash Course Exercises - Solutions
Урок 14.00:00:12
Welcome to the NumPy Section!
Урок 15.00:02:14
Introduction to Numpy
Урок 16.00:16:51
Numpy Arrays
Урок 17.00:18:24
Numpy Array Indexing
Урок 18.00:07:05
Numpy Operations
Урок 19.00:02:47
Numpy Exercises Overview
Урок 20.00:15:33
Numpy Exercises Solutions
Урок 21.00:00:15
Welcome to the Pandas Section!
Урок 22.00:01:45
Introduction to Pandas
Урок 23.00:10:40
Series
Урок 24.00:15:32
DataFrames - Part 1
Урок 25.00:17:11
DataFrames - Part 2
Урок 26.00:09:13
DataFrames - Part 3
Урок 27.00:06:20
Missing Data
Урок 28.00:06:50
Groupby
Урок 29.00:08:57
Merging Joining and Concatenating
Урок 30.00:12:05
Operations
Урок 31.00:14:01
Data Input and Output
Урок 32.00:01:56
SF Salaries Exercise Overview
Урок 33.00:15:27
SF Salaries Solutions
Урок 34.00:02:12
Ecommerce Purchases Exercise Overview
Урок 35.00:15:14
Ecommerce Purchases Exercise Solutions
Урок 36.00:00:23
Welcome to the Data Visualization Section!
Урок 37.00:03:03
Introduction to Matplotlib
Урок 38.00:16:59
Matplotlib Part 1
Урок 39.00:15:52
Matplotlib Part 2
Урок 40.00:11:53
Matplotlib Part 3
Урок 41.00:01:48
Matplotlib Exercises Overview
Урок 42.00:10:20
Matplotlib Exercises - Solutions
Урок 43.00:02:59
Introduction to Seaborn
Урок 44.00:18:22
Distribution Plots
Урок 45.00:17:19
Categorical Plots
Урок 46.00:10:15
Matrix Plots
Урок 47.00:08:31
Grids
Урок 48.00:07:15
Regression Plots
Урок 49.00:08:22
Style and Color
Урок 50.00:01:54
Seaborn Exercise Overview
Урок 51.00:07:09
Seaborn Exercise Solutions
Урок 52.00:13:28
Pandas Built-in Data Visualization
Урок 53.00:01:24
Pandas Data Visualization Exercise
Урок 54.00:08:56
Pandas Data Visualization Exercise- Solutions
Урок 55.00:03:23
Introduction to Plotly and Cufflinks
Урок 56.00:18:39
Plotly and Cufflinks
Урок 57.00:00:59
Introduction to Geographical Plotting
Урок 58.00:19:27
Choropleth Maps - Part 1 - USA
Урок 59.00:06:54
Choropleth Maps - Part 2 - World
Урок 60.00:03:13
Choropleth Exercises
Урок 61.00:10:02
Choropleth Exercises - Solutions
Урок 62.00:00:18
Welcome to the Data Capstone Projects!
Урок 63.00:02:08
911 Calls Project Overview
Урок 64.00:14:30
911 Calls Solutions - Part 1
Урок 65.00:17:38
911 Calls Solutions - Part 2
Урок 66.00:03:07
Finance Data Project Overview
Урок 67.00:16:14
Finance Project - Solutions Part 1
Урок 68.00:18:12
Finance Project - Solutions Part 2
Урок 69.00:06:25
Finance Project - Solutions Part 3
Урок 70.00:00:32
Welcome to the Machine Learning Section!
Урок 71.00:08:22
Supervised Learning Overview
Урок 72.00:16:38
Evaluating Performance - Classification Error Metrics
Урок 73.00:05:37
Evaluating Performance - Regression Error Metrics
Урок 74.00:09:28
Machine Learning with Python
Урок 75.00:04:34
Linear Regression Theory
Урок 76.00:18:17
Linear Regression with Python - Part 1
Урок 77.00:07:06
Linear Regression with Python - Part 2
Урок 78.00:02:32
Linear Regression Project Overview
Урок 79.00:18:44
Linear Regression Project Solution
Урок 80.00:06:26
Bias Variance Trade-Off
Урок 81.00:11:54
Logistic Regression Theory
Урок 82.00:17:44
Logistic Regression with Python - Part 1
Урок 83.00:16:58
Logistic Regression with Python - Part 2
Урок 84.00:08:16
Logistic Regression with Python - Part 3
Урок 85.00:01:37
Logistic Regression Project Overview
Урок 86.00:11:06
Logistic Regression Project Solutions
Урок 87.00:05:40
KNN Theory
Урок 88.00:19:40
KNN with Python
Урок 89.00:01:13
KNN Project Overview
Урок 90.00:14:15
KNN Project Solutions
Урок 91.00:06:54
Introduction to Tree Methods
Урок 92.00:13:58
Decision Trees and Random Forest with Python
Урок 93.00:03:11
Decision Trees and Random Forest Project Overview
Урок 94.00:12:15
Decision Trees and Random Forest Solutions Part 1
Урок 95.00:08:47
Decision Trees and Random Forest Solutions Part 2
Урок 96.00:04:37
SVM Theory
Урок 97.00:17:53
Support Vector Machines with Python
Урок 98.00:02:22
SVM Project Overview
Урок 99.00:10:10
SVM Project Solutions
Урок 100.00:05:16
K Means Algorithm Theory
Урок 101.00:12:36
K Means with Python
Урок 102.00:02:54
K Means Project Overview
Урок 103.00:16:39
K Means Project Solutions
Урок 104.00:03:27
Principal Component Analysis
Урок 105.00:17:00
PCA with Python
Урок 106.00:04:14
Recommender Systems
Урок 107.00:13:38
Recommender Systems with Python - Part 1
Урок 108.00:13:22
Recommender Systems with Python - Part 2
Урок 109.00:05:08
Natural Language Processing Theory
Урок 110.00:16:03
NLP with Python - Part 1
Урок 111.00:18:48
NLP with Python - Part 2
Урок 112.00:17:31
NLP with Python - Part 3
Урок 113.00:02:05
NLP Project Overview
Урок 114.00:19:27
NLP Project Solutions
Урок 115.00:00:22
Welcome to the Deep Learning Section!
Урок 116.00:02:16
Introduction to Artificial Neural Networks (ANN)
Урок 117.00:10:40
Perceptron Model
Урок 118.00:07:20
Neural Networks
Урок 119.00:10:40
Activation Functions
Урок 120.00:10:35
Multi-Class Classification Considerations
Урок 121.00:18:14
Cost Functions and Gradient Descent
Урок 122.00:14:48
Backpropagation
Урок 123.00:02:14
TensorFlow vs Keras
Урок 124.00:10:50
TF Syntax Basics - Part One - Preparing the Data
Урок 125.00:14:00
TF Syntax Basics - Part Two - Creating and Training the Model
Урок 126.00:12:57
TF Syntax Basics - Part Three - Model Evaluation
Урок 127.00:18:51
TF Regression Code Along - Exploratory Data Analysis
Урок 128.00:13:16
TF Regression Code Along - Exploratory Data Analysis - Continued
Урок 129.00:08:43
TF Regression Code Along - Data Preprocessing and Creating a Model
Урок 130.00:11:24
TF Regression Code Along - Model Evaluation and Predictions
Урок 131.00:08:06
TF Classification Code Along - EDA and Preprocessing
Урок 132.00:16:51
TF Classification - Dealing with Overfitting and Evaluation
Урок 133.00:01:41
TensorFlow 2.0 Project Options Overview
Урок 134.00:07:42
TensorFlow 2.0 Project Notebook Overview
Урок 135.00:20:36
Keras Project Solutions - Dealing with Missing Data
Урок 136.00:14:47
Keras Project Solutions - Dealing with Missing Data - Part Two
Урок 137.00:12:03
Keras Project Solutions - Categorical Data
Урок 138.00:17:24
Keras Project Solutions - Data PreProcessing
Урок 139.00:03:46
Keras Project Solutions - Data PreProcessing
Урок 140.00:03:58
Keras Project Solutions - Creating and Training a Model
Урок 141.00:09:43
Keras Project Solutions - Model Evaluation
Урок 142.00:18:23
Tensorboard
Урок 143.00:00:24
Welcome to the Big Data Section!
Урок 144.00:05:32
Big Data Overview
Урок 145.00:09:01
Spark Overview
Урок 146.00:04:14
AWS Account Set-Up
Урок 147.00:16:19
EC2 Instance Set-Up
Урок 148.00:04:50
SSH with Mac or Linux
Урок 149.00:23:49
PySpark Setup
Урок 150.00:05:27
Lambda Expressions Review
Урок 151.00:08:18
Introduction to Spark and Python
Урок 152.00:23:10
RDD Transformations and Actions