1. Урок 1.00:03:23
    Applications of Machine Learning
  2. Урок 2.00:06:39
    Why Machine Learning is the Future
  3. Урок 3.00:16:49
    Presentation of the ML A-Z folder, Colaboratory, Jupyter Notebook and Spyder
  4. Урок 4.00:05:41
    Installing R and R Studio (Mac, Linux & Windows)
  5. Урок 5.00:10:51
    Getting Started
  6. Урок 6.00:03:35
    Importing the Libraries
  7. Урок 7.00:15:43
    Importing the Dataset
  8. Урок 8.00:12:16
    Taking care of Missing Data
  9. Урок 9.00:14:59
    Encoding Categorical Data
  10. Урок 10.00:13:48
    Splitting the dataset into the Training set and Test set
  11. Урок 11.00:20:32
    Feature Scaling
  12. Урок 12.00:01:36
    Getting Started
  13. Урок 13.00:01:58
    Dataset Description
  14. Урок 14.00:02:45
    Importing the Dataset
  15. Урок 15.00:06:23
    Taking care of Missing Data
  16. Урок 16.00:06:03
    Encoding Categorical Data
  17. Урок 17.00:09:35
    Splitting the dataset into the Training set and Test set
  18. Урок 18.00:09:15
    Feature Scaling
  19. Урок 19.00:05:16
    Data Preprocessing Template
  20. Урок 20.00:05:46
    Simple Linear Regression Intuition - Step 1
  21. Урок 21.00:03:10
    Simple Linear Regression Intuition - Step 2
  22. Урок 22.00:12:49
    Simple Linear Regression in Python - Step 1
  23. Урок 23.00:07:57
    Simple Linear Regression in Python - Step 2
  24. Урок 24.00:04:36
    Simple Linear Regression in Python - Step 3
  25. Урок 25.00:12:57
    Simple Linear Regression in Python - Step 4
  26. Урок 26.00:04:41
    Simple Linear Regression in R - Step 1
  27. Урок 27.00:05:59
    Simple Linear Regression in R - Step 2
  28. Урок 28.00:03:40
    Simple Linear Regression in R - Step 3
  29. Урок 29.00:15:57
    Simple Linear Regression in R - Step 4
  30. Урок 30.00:03:45
    Dataset + Business Problem Description
  31. Урок 31.00:01:04
    Multiple Linear Regression Intuition - Step 1
  32. Урок 32.00:01:01
    Multiple Linear Regression Intuition - Step 2
  33. Урок 33.00:07:22
    Multiple Linear Regression Intuition - Step 3
  34. Урок 34.00:02:11
    Multiple Linear Regression Intuition - Step 4
  35. Урок 35.00:11:45
    Understanding the P-Value
  36. Урок 36.00:15:42
    Multiple Linear Regression Intuition - Step 5
  37. Урок 37.00:08:31
    Multiple Linear Regression in Python - Step 1
  38. Урок 38.00:09:12
    Multiple Linear Regression in Python - Step 2
  39. Урок 39.00:10:38
    Multiple Linear Regression in Python - Step 3
  40. Урок 40.00:12:32
    Multiple Linear Regression in Python - Step 4
  41. Урок 41.00:07:51
    Multiple Linear Regression in R - Step 1
  42. Урок 42.00:10:27
    Multiple Linear Regression in R - Step 2
  43. Урок 43.00:04:28
    Multiple Linear Regression in R - Step 3
  44. Урок 44.00:17:52
    Multiple Linear Regression in R - Backward Elimination - HOMEWORK !
  45. Урок 45.00:07:35
    Multiple Linear Regression in R - Backward Elimination - Homework Solution
  46. Урок 46.00:05:10
    Polynomial Regression Intuition
  47. Урок 47.00:13:31
    Polynomial Regression in Python - Step 1
  48. Урок 48.00:11:41
    Polynomial Regression in Python - Step 2
  49. Урок 49.00:12:55
    Polynomial Regression in Python - Step 3
  50. Урок 50.00:08:11
    Polynomial Regression in Python - Step 4
  51. Урок 51.00:09:14
    Polynomial Regression in R - Step 1
  52. Урок 52.00:09:59
    Polynomial Regression in R - Step 2
  53. Урок 53.00:19:55
    Polynomial Regression in R - Step 3
  54. Урок 54.00:09:36
    Polynomial Regression in R - Step 4
  55. Урок 55.00:11:59
    R Regression Template
  56. Урок 56.00:08:10
    SVR Intuition (Updated!)
  57. Урок 57.00:03:58
    Heads-up on non-linear SVR
  58. Урок 58.00:09:16
    SVR in Python - Step 1
  59. Урок 59.00:15:11
    SVR in Python - Step 2
  60. Урок 60.00:06:28
    SVR in Python - Step 3
  61. Урок 61.00:08:02
    SVR in Python - Step 4
  62. Урок 62.00:15:41
    SVR in Python - Step 5
  63. Урок 63.00:11:45
    SVR in R
  64. Урок 64.00:11:07
    Decision Tree Regression Intuition
  65. Урок 65.00:08:39
    Decision Tree Regression in Python - Step 1
  66. Урок 66.00:05:01
    Decision Tree Regression in Python - Step 2
  67. Урок 67.00:03:17
    Decision Tree Regression in Python - Step 3
  68. Урок 68.00:09:51
    Decision Tree Regression in Python - Step 4
  69. Урок 69.00:19:55
    Decision Tree Regression in R
  70. Урок 70.00:06:45
    Random Forest Regression Intuition
  71. Урок 71.00:13:24
    Random Forest Regression in Python
  72. Урок 72.00:17:44
    Random Forest Regression in R
  73. Урок 73.00:05:12
    R-Squared Intuition
  74. Урок 74.00:09:58
    Adjusted R-Squared Intuition
  75. Урок 75.00:19:27
    Preparation of the Regression Code Templates
  76. Урок 76.00:09:04
    THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION!
  77. Урок 77.00:08:55
    Evaluating Regression Models Performance - Homework's Final Part
  78. Урок 78.00:09:17
    Interpreting Linear Regression Coefficients
  79. Урок 79.00:17:08
    Logistic Regression Intuition
  80. Урок 80.00:09:44
    Logistic Regression in Python - Step 1
  81. Урок 81.00:13:39
    Logistic Regression in Python - Step 2
  82. Урок 82.00:07:41
    Logistic Regression in Python - Step 3
  83. Урок 83.00:07:50
    Logistic Regression in Python - Step 4
  84. Урок 84.00:06:16
    Logistic Regression in Python - Step 5
  85. Урок 85.00:09:27
    Logistic Regression in Python - Step 6
  86. Урок 86.00:16:07
    Logistic Regression in Python - Step 7
  87. Урок 87.00:06:00
    Logistic Regression in R - Step 1
  88. Урок 88.00:03:00
    Logistic Regression in R - Step 2
  89. Урок 89.00:05:24
    Logistic Regression in R - Step 3
  90. Урок 90.00:02:49
    Logistic Regression in R - Step 4
  91. Урок 91.00:19:25
    Logistic Regression in R - Step 5
  92. Урок 92.00:04:18
    R Classification Template
  93. Урок 93.00:04:54
    K-Nearest Neighbor Intuition
  94. Урок 94.00:19:59
    K-NN in Python
  95. Урок 95.00:15:48
    K-NN in R
  96. Урок 96.00:09:50
    SVM Intuition
  97. Урок 97.00:14:53
    SVM in Python
  98. Урок 98.00:12:10
    SVM in R
  99. Урок 99.00:03:18
    Kernel SVM Intuition
  100. Урок 100.00:07:51
    Mapping to a higher dimension
  101. Урок 101.00:12:21
    The Kernel Trick
  102. Урок 102.00:03:48
    Types of Kernel Functions
  103. Урок 103.00:10:56
    Non-Linear Kernel SVR (Advanced)
  104. Урок 104.00:13:04
    Kernel SVM in Python
  105. Урок 105.00:16:35
    Kernel SVM in R
  106. Урок 106.00:20:26
    Bayes Theorem
  107. Урок 107.00:14:04
    Naive Bayes Intuition
  108. Урок 108.00:06:05
    Naive Bayes Intuition (Challenge Reveal)
  109. Урок 109.00:09:43
    Naive Bayes Intuition (Extras)
  110. Урок 110.00:14:20
    Naive Bayes in Python
  111. Урок 111.00:14:54
    Naive Bayes in R
  112. Урок 112.00:08:09
    Decision Tree Classification Intuition
  113. Урок 113.00:14:04
    Decision Tree Classification in Python
  114. Урок 114.00:19:49
    Decision Tree Classification in R
  115. Урок 115.00:04:29
    Random Forest Classification Intuition
  116. Урок 116.00:13:29
    Random Forest Classification in Python
  117. Урок 117.00:19:57
    Random Forest Classification in R
  118. Урок 118.00:21:01
    THE ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION!
  119. Урок 119.00:07:59
    False Positives & False Negatives
  120. Урок 120.00:04:58
    Confusion Matrix
  121. Урок 121.00:02:13
    Accuracy Paradox
  122. Урок 122.00:11:17
    CAP Curve
  123. Урок 123.00:06:20
    CAP Curve Analysis
  124. Урок 124.00:14:18
    K-Means Clustering Intuition
  125. Урок 125.00:07:49
    K-Means Random Initialization Trap
  126. Урок 126.00:11:52
    K-Means Selecting The Number Of Clusters
  127. Урок 127.00:08:26
    K-Means Clustering in Python - Step 1
  128. Урок 128.00:10:37
    K-Means Clustering in Python - Step 2
  129. Урок 129.00:16:59
    K-Means Clustering in Python - Step 3
  130. Урок 130.00:06:45
    K-Means Clustering in Python - Step 4
  131. Урок 131.00:19:36
    K-Means Clustering in Python - Step 5
  132. Урок 132.00:11:48
    K-Means Clustering in R
  133. Урок 133.00:08:49
    Hierarchical Clustering Intuition
  134. Урок 134.00:08:49
    Hierarchical Clustering How Dendrograms Work
  135. Урок 135.00:11:22
    Hierarchical Clustering Using Dendrograms
  136. Урок 136.00:06:57
    Hierarchical Clustering in Python - Step 1
  137. Урок 137.00:17:13
    Hierarchical Clustering in Python - Step 2
  138. Урок 138.00:12:20
    Hierarchical Clustering in Python - Step 3
  139. Урок 139.00:03:46
    Hierarchical Clustering in R - Step 1
  140. Урок 140.00:05:25
    Hierarchical Clustering in R - Step 2
  141. Урок 141.00:03:20
    Hierarchical Clustering in R - Step 3
  142. Урок 142.00:02:46
    Hierarchical Clustering in R - Step 4
  143. Урок 143.00:02:34
    Hierarchical Clustering in R - Step 5
  144. Урок 144.00:18:14
    Apriori Intuition
  145. Урок 145.00:08:47
    Apriori in Python - Step 1
  146. Урок 146.00:17:08
    Apriori in Python - Step 2
  147. Урок 147.00:12:49
    Apriori in Python - Step 3
  148. Урок 148.00:19:42
    Apriori in Python - Step 4
  149. Урок 149.00:19:54
    Apriori in R - Step 1
  150. Урок 150.00:14:26
    Apriori in R - Step 2
  151. Урок 151.00:19:19
    Apriori in R - Step 3
  152. Урок 152.00:06:06
    Eclat Intuition
  153. Урок 153.00:12:01
    Eclat in Python
  154. Урок 154.00:10:10
    Eclat in R
  155. Урок 155.00:15:37
    The Multi-Armed Bandit Problem
  156. Урок 156.00:14:54
    Upper Confidence Bound (UCB) Intuition
  157. Урок 157.00:12:43
    Upper Confidence Bound in Python - Step 1
  158. Урок 158.00:03:52
    Upper Confidence Bound in Python - Step 2
  159. Урок 159.00:07:17
    Upper Confidence Bound in Python - Step 3
  160. Урок 160.00:15:46
    Upper Confidence Bound in Python - Step 4
  161. Урок 161.00:06:13
    Upper Confidence Bound in Python - Step 5
  162. Урок 162.00:07:29
    Upper Confidence Bound in Python - Step 6
  163. Урок 163.00:08:10
    Upper Confidence Bound in Python - Step 7
  164. Урок 164.00:13:40
    Upper Confidence Bound in R - Step 1
  165. Урок 165.00:16:00
    Upper Confidence Bound in R - Step 2
  166. Урок 166.00:17:39
    Upper Confidence Bound in R - Step 3
  167. Урок 167.00:03:19
    Upper Confidence Bound in R - Step 4
  168. Урок 168.00:19:13
    Thompson Sampling Intuition
  169. Урок 169.00:08:13
    Algorithm Comparison: UCB vs Thompson Sampling
  170. Урок 170.00:05:48
    Thompson Sampling in Python - Step 1
  171. Урок 171.00:12:20
    Thompson Sampling in Python - Step 2
  172. Урок 172.00:14:04
    Thompson Sampling in Python - Step 3
  173. Урок 173.00:07:46
    Thompson Sampling in Python - Step 4
  174. Урок 174.00:19:02
    Thompson Sampling in R - Step 1
  175. Урок 175.00:03:28
    Thompson Sampling in R - Step 2
  176. Урок 176.00:03:03
    NLP Intuition
  177. Урок 177.00:04:12
    Types of Natural Language Processing
  178. Урок 178.00:11:23
    Classical vs Deep Learning Models
  179. Урок 179.00:17:06
    Bag-Of-Words Model
  180. Урок 180.00:07:14
    Natural Language Processing in Python - Step 1
  181. Урок 181.00:06:46
    Natural Language Processing in Python - Step 2
  182. Урок 182.00:12:55
    Natural Language Processing in Python - Step 3
  183. Урок 183.00:11:01
    Natural Language Processing in Python - Step 4
  184. Урок 184.00:17:25
    Natural Language Processing in Python - Step 5
  185. Урок 185.00:09:53
    Natural Language Processing in Python - Step 6
  186. Урок 186.00:16:36
    Natural Language Processing in R - Step 1
  187. Урок 187.00:08:40
    Natural Language Processing in R - Step 2
  188. Урок 188.00:06:29
    Natural Language Processing in R - Step 3
  189. Урок 189.00:02:59
    Natural Language Processing in R - Step 4
  190. Урок 190.00:02:06
    Natural Language Processing in R - Step 5
  191. Урок 191.00:05:50
    Natural Language Processing in R - Step 6
  192. Урок 192.00:03:28
    Natural Language Processing in R - Step 7
  193. Урок 193.00:05:21
    Natural Language Processing in R - Step 8
  194. Урок 194.00:12:51
    Natural Language Processing in R - Step 9
  195. Урок 195.00:17:32
    Natural Language Processing in R - Step 10
  196. Урок 196.00:12:35
    What is Deep Learning?
  197. Урок 197.00:02:53
    Plan of attack
  198. Урок 198.00:16:26
    The Neuron
  199. Урок 199.00:08:30
    The Activation Function
  200. Урок 200.00:12:49
    How do Neural Networks work?
  201. Урок 201.00:13:00
    How do Neural Networks learn?
  202. Урок 202.00:10:14
    Gradient Descent
  203. Урок 203.00:08:45
    Stochastic Gradient Descent
  204. Урок 204.00:05:23
    Backpropagation
  205. Урок 205.00:05:00
    Business Problem Description
  206. Урок 206.00:10:22
    ANN in Python - Step 1
  207. Урок 207.00:18:37
    ANN in Python - Step 2
  208. Урок 208.00:14:29
    ANN in Python - Step 3
  209. Урок 209.00:11:59
    ANN in Python - Step 4
  210. Урок 210.00:16:26
    ANN in Python - Step 5
  211. Урок 211.00:17:18
    ANN in R - Step 1
  212. Урок 212.00:06:31
    ANN in R - Step 2
  213. Урок 213.00:12:31
    ANN in R - Step 3
  214. Урок 214.00:14:08
    ANN in R - Step 4 (Last step)
  215. Урок 215.00:03:32
    Plan of attack
  216. Урок 216.00:15:50
    What are convolutional neural networks?
  217. Урок 217.00:16:39
    Step 1 - Convolution Operation
  218. Урок 218.00:06:42
    Step 1(b) - ReLU Layer
  219. Урок 219.00:14:14
    Step 2 - Pooling
  220. Урок 220.00:01:53
    Step 3 - Flattening
  221. Урок 221.00:19:26
    Step 4 - Full Connection
  222. Урок 222.00:04:20
    Summary
  223. Урок 223.00:18:21
    Softmax & Cross-Entropy
  224. Урок 224.00:11:36
    CNN in Python - Step 1
  225. Урок 225.00:17:47
    CNN in Python - Step 2
  226. Урок 226.00:17:57
    CNN in Python - Step 3
  227. Урок 227.00:07:22
    CNN in Python - Step 4
  228. Урок 228.00:14:56
    CNN in Python - Step 5
  229. Урок 229.00:23:39
    CNN in Python - FINAL DEMO!
  230. Урок 230.00:03:50
    Principal Component Analysis (PCA) Intuition
  231. Урок 231.00:16:53
    PCA in Python - Step 1
  232. Урок 232.00:05:31
    PCA in Python - Step 2
  233. Урок 233.00:12:09
    PCA in R - Step 1
  234. Урок 234.00:11:23
    PCA in R - Step 2
  235. Урок 235.00:13:43
    PCA in R - Step 3
  236. Урок 236.00:03:51
    Linear Discriminant Analysis (LDA) Intuition
  237. Урок 237.00:14:53
    LDA in Python
  238. Урок 238.00:20:01
    LDA in R
  239. Урок 239.00:11:04
    Kernel PCA in Python
  240. Урок 240.00:20:31
    Kernel PCA in R
  241. Урок 241.00:17:56
    k-Fold Cross Validation in Python
  242. Урок 242.00:21:57
    Grid Search in Python
  243. Урок 243.00:19:30
    k-Fold Cross Validation in R
  244. Урок 244.00:14:00
    Grid Search in R
  245. Урок 245.00:14:49
    XGBoost in Python
  246. Урок 246.00:18:15
    XGBoost in R
  247. Урок 247.00:02:41
    THANK YOU Bonus Video