-
Урок 1.
00:03:23
Applications of Machine Learning
-
Урок 2.
00:06:39
Why Machine Learning is the Future
-
Урок 3.
00:16:49
Presentation of the ML A-Z folder, Colaboratory, Jupyter Notebook and Spyder
-
Урок 4.
00:05:41
Installing R and R Studio (Mac, Linux & Windows)
-
Урок 5.
00:10:51
Getting Started
-
Урок 6.
00:03:35
Importing the Libraries
-
Урок 7.
00:15:43
Importing the Dataset
-
Урок 8.
00:12:16
Taking care of Missing Data
-
Урок 9.
00:14:59
Encoding Categorical Data
-
Урок 10.
00:13:48
Splitting the dataset into the Training set and Test set
-
Урок 11.
00:20:32
Feature Scaling
-
Урок 12.
00:01:36
Getting Started
-
Урок 13.
00:01:58
Dataset Description
-
Урок 14.
00:02:45
Importing the Dataset
-
Урок 15.
00:06:23
Taking care of Missing Data
-
Урок 16.
00:06:03
Encoding Categorical Data
-
Урок 17.
00:09:35
Splitting the dataset into the Training set and Test set
-
Урок 18.
00:09:15
Feature Scaling
-
Урок 19.
00:05:16
Data Preprocessing Template
-
Урок 20.
00:05:46
Simple Linear Regression Intuition - Step 1
-
Урок 21.
00:03:10
Simple Linear Regression Intuition - Step 2
-
Урок 22.
00:12:49
Simple Linear Regression in Python - Step 1
-
Урок 23.
00:07:57
Simple Linear Regression in Python - Step 2
-
Урок 24.
00:04:36
Simple Linear Regression in Python - Step 3
-
Урок 25.
00:12:57
Simple Linear Regression in Python - Step 4
-
Урок 26.
00:04:41
Simple Linear Regression in R - Step 1
-
Урок 27.
00:05:59
Simple Linear Regression in R - Step 2
-
Урок 28.
00:03:40
Simple Linear Regression in R - Step 3
-
Урок 29.
00:15:57
Simple Linear Regression in R - Step 4
-
Урок 30.
00:03:45
Dataset + Business Problem Description
-
Урок 31.
00:01:04
Multiple Linear Regression Intuition - Step 1
-
Урок 32.
00:01:01
Multiple Linear Regression Intuition - Step 2
-
Урок 33.
00:07:22
Multiple Linear Regression Intuition - Step 3
-
Урок 34.
00:02:11
Multiple Linear Regression Intuition - Step 4
-
Урок 35.
00:11:45
Understanding the P-Value
-
Урок 36.
00:15:42
Multiple Linear Regression Intuition - Step 5
-
Урок 37.
00:08:31
Multiple Linear Regression in Python - Step 1
-
Урок 38.
00:09:12
Multiple Linear Regression in Python - Step 2
-
Урок 39.
00:10:38
Multiple Linear Regression in Python - Step 3
-
Урок 40.
00:12:32
Multiple Linear Regression in Python - Step 4
-
Урок 41.
00:07:51
Multiple Linear Regression in R - Step 1
-
Урок 42.
00:10:27
Multiple Linear Regression in R - Step 2
-
Урок 43.
00:04:28
Multiple Linear Regression in R - Step 3
-
Урок 44.
00:17:52
Multiple Linear Regression in R - Backward Elimination - HOMEWORK !
-
Урок 45.
00:07:35
Multiple Linear Regression in R - Backward Elimination - Homework Solution
-
Урок 46.
00:05:10
Polynomial Regression Intuition
-
Урок 47.
00:13:31
Polynomial Regression in Python - Step 1
-
Урок 48.
00:11:41
Polynomial Regression in Python - Step 2
-
Урок 49.
00:12:55
Polynomial Regression in Python - Step 3
-
Урок 50.
00:08:11
Polynomial Regression in Python - Step 4
-
Урок 51.
00:09:14
Polynomial Regression in R - Step 1
-
Урок 52.
00:09:59
Polynomial Regression in R - Step 2
-
Урок 53.
00:19:55
Polynomial Regression in R - Step 3
-
Урок 54.
00:09:36
Polynomial Regression in R - Step 4
-
Урок 55.
00:11:59
R Regression Template
-
Урок 56.
00:08:10
SVR Intuition (Updated!)
-
Урок 57.
00:03:58
Heads-up on non-linear SVR
-
Урок 58.
00:09:16
SVR in Python - Step 1
-
Урок 59.
00:15:11
SVR in Python - Step 2
-
Урок 60.
00:06:28
SVR in Python - Step 3
-
Урок 61.
00:08:02
SVR in Python - Step 4
-
Урок 62.
00:15:41
SVR in Python - Step 5
-
Урок 63.
00:11:45
SVR in R
-
Урок 64.
00:11:07
Decision Tree Regression Intuition
-
Урок 65.
00:08:39
Decision Tree Regression in Python - Step 1
-
Урок 66.
00:05:01
Decision Tree Regression in Python - Step 2
-
Урок 67.
00:03:17
Decision Tree Regression in Python - Step 3
-
Урок 68.
00:09:51
Decision Tree Regression in Python - Step 4
-
Урок 69.
00:19:55
Decision Tree Regression in R
-
Урок 70.
00:06:45
Random Forest Regression Intuition
-
Урок 71.
00:13:24
Random Forest Regression in Python
-
Урок 72.
00:17:44
Random Forest Regression in R
-
Урок 73.
00:05:12
R-Squared Intuition
-
Урок 74.
00:09:58
Adjusted R-Squared Intuition
-
Урок 75.
00:19:27
Preparation of the Regression Code Templates
-
Урок 76.
00:09:04
THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION!
-
Урок 77.
00:08:55
Evaluating Regression Models Performance - Homework's Final Part
-
Урок 78.
00:09:17
Interpreting Linear Regression Coefficients
-
Урок 79.
00:17:08
Logistic Regression Intuition
-
Урок 80.
00:09:44
Logistic Regression in Python - Step 1
-
Урок 81.
00:13:39
Logistic Regression in Python - Step 2
-
Урок 82.
00:07:41
Logistic Regression in Python - Step 3
-
Урок 83.
00:07:50
Logistic Regression in Python - Step 4
-
Урок 84.
00:06:16
Logistic Regression in Python - Step 5
-
Урок 85.
00:09:27
Logistic Regression in Python - Step 6
-
Урок 86.
00:16:07
Logistic Regression in Python - Step 7
-
Урок 87.
00:06:00
Logistic Regression in R - Step 1
-
Урок 88.
00:03:00
Logistic Regression in R - Step 2
-
Урок 89.
00:05:24
Logistic Regression in R - Step 3
-
Урок 90.
00:02:49
Logistic Regression in R - Step 4
-
Урок 91.
00:19:25
Logistic Regression in R - Step 5
-
Урок 92.
00:04:18
R Classification Template
-
Урок 93.
00:04:54
K-Nearest Neighbor Intuition
-
Урок 94.
00:19:59
K-NN in Python
-
Урок 95.
00:15:48
K-NN in R
-
Урок 96.
00:09:50
SVM Intuition
-
Урок 97.
00:14:53
SVM in Python
-
Урок 98.
00:12:10
SVM in R
-
Урок 99.
00:03:18
Kernel SVM Intuition
-
Урок 100.
00:07:51
Mapping to a higher dimension
-
Урок 101.
00:12:21
The Kernel Trick
-
Урок 102.
00:03:48
Types of Kernel Functions
-
Урок 103.
00:10:56
Non-Linear Kernel SVR (Advanced)
-
Урок 104.
00:13:04
Kernel SVM in Python
-
Урок 105.
00:16:35
Kernel SVM in R
-
Урок 106.
00:20:26
Bayes Theorem
-
Урок 107.
00:14:04
Naive Bayes Intuition
-
Урок 108.
00:06:05
Naive Bayes Intuition (Challenge Reveal)
-
Урок 109.
00:09:43
Naive Bayes Intuition (Extras)
-
Урок 110.
00:14:20
Naive Bayes in Python
-
Урок 111.
00:14:54
Naive Bayes in R
-
Урок 112.
00:08:09
Decision Tree Classification Intuition
-
Урок 113.
00:14:04
Decision Tree Classification in Python
-
Урок 114.
00:19:49
Decision Tree Classification in R
-
Урок 115.
00:04:29
Random Forest Classification Intuition
-
Урок 116.
00:13:29
Random Forest Classification in Python
-
Урок 117.
00:19:57
Random Forest Classification in R
-
Урок 118.
00:21:01
THE ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION!
-
Урок 119.
00:07:59
False Positives & False Negatives
-
Урок 120.
00:04:58
Confusion Matrix
-
Урок 121.
00:02:13
Accuracy Paradox
-
Урок 122.
00:11:17
CAP Curve
-
Урок 123.
00:06:20
CAP Curve Analysis
-
Урок 124.
00:14:18
K-Means Clustering Intuition
-
Урок 125.
00:07:49
K-Means Random Initialization Trap
-
Урок 126.
00:11:52
K-Means Selecting The Number Of Clusters
-
Урок 127.
00:08:26
K-Means Clustering in Python - Step 1
-
Урок 128.
00:10:37
K-Means Clustering in Python - Step 2
-
Урок 129.
00:16:59
K-Means Clustering in Python - Step 3
-
Урок 130.
00:06:45
K-Means Clustering in Python - Step 4
-
Урок 131.
00:19:36
K-Means Clustering in Python - Step 5
-
Урок 132.
00:11:48
K-Means Clustering in R
-
Урок 133.
00:08:49
Hierarchical Clustering Intuition
-
Урок 134.
00:08:49
Hierarchical Clustering How Dendrograms Work
-
Урок 135.
00:11:22
Hierarchical Clustering Using Dendrograms
-
Урок 136.
00:06:57
Hierarchical Clustering in Python - Step 1
-
Урок 137.
00:17:13
Hierarchical Clustering in Python - Step 2
-
Урок 138.
00:12:20
Hierarchical Clustering in Python - Step 3
-
Урок 139.
00:03:46
Hierarchical Clustering in R - Step 1
-
Урок 140.
00:05:25
Hierarchical Clustering in R - Step 2
-
Урок 141.
00:03:20
Hierarchical Clustering in R - Step 3
-
Урок 142.
00:02:46
Hierarchical Clustering in R - Step 4
-
Урок 143.
00:02:34
Hierarchical Clustering in R - Step 5
-
Урок 144.
00:18:14
Apriori Intuition
-
Урок 145.
00:08:47
Apriori in Python - Step 1
-
Урок 146.
00:17:08
Apriori in Python - Step 2
-
Урок 147.
00:12:49
Apriori in Python - Step 3
-
Урок 148.
00:19:42
Apriori in Python - Step 4
-
Урок 149.
00:19:54
Apriori in R - Step 1
-
Урок 150.
00:14:26
Apriori in R - Step 2
-
Урок 151.
00:19:19
Apriori in R - Step 3
-
Урок 152.
00:06:06
Eclat Intuition
-
Урок 153.
00:12:01
Eclat in Python
-
Урок 154.
00:10:10
Eclat in R
-
Урок 155.
00:15:37
The Multi-Armed Bandit Problem
-
Урок 156.
00:14:54
Upper Confidence Bound (UCB) Intuition
-
Урок 157.
00:12:43
Upper Confidence Bound in Python - Step 1
-
Урок 158.
00:03:52
Upper Confidence Bound in Python - Step 2
-
Урок 159.
00:07:17
Upper Confidence Bound in Python - Step 3
-
Урок 160.
00:15:46
Upper Confidence Bound in Python - Step 4
-
Урок 161.
00:06:13
Upper Confidence Bound in Python - Step 5
-
Урок 162.
00:07:29
Upper Confidence Bound in Python - Step 6
-
Урок 163.
00:08:10
Upper Confidence Bound in Python - Step 7
-
Урок 164.
00:13:40
Upper Confidence Bound in R - Step 1
-
Урок 165.
00:16:00
Upper Confidence Bound in R - Step 2
-
Урок 166.
00:17:39
Upper Confidence Bound in R - Step 3
-
Урок 167.
00:03:19
Upper Confidence Bound in R - Step 4
-
Урок 168.
00:19:13
Thompson Sampling Intuition
-
Урок 169.
00:08:13
Algorithm Comparison: UCB vs Thompson Sampling
-
Урок 170.
00:05:48
Thompson Sampling in Python - Step 1
-
Урок 171.
00:12:20
Thompson Sampling in Python - Step 2
-
Урок 172.
00:14:04
Thompson Sampling in Python - Step 3
-
Урок 173.
00:07:46
Thompson Sampling in Python - Step 4
-
Урок 174.
00:19:02
Thompson Sampling in R - Step 1
-
Урок 175.
00:03:28
Thompson Sampling in R - Step 2
-
Урок 176.
00:03:03
NLP Intuition
-
Урок 177.
00:04:12
Types of Natural Language Processing
-
Урок 178.
00:11:23
Classical vs Deep Learning Models
-
Урок 179.
00:17:06
Bag-Of-Words Model
-
Урок 180.
00:07:14
Natural Language Processing in Python - Step 1
-
Урок 181.
00:06:46
Natural Language Processing in Python - Step 2
-
Урок 182.
00:12:55
Natural Language Processing in Python - Step 3
-
Урок 183.
00:11:01
Natural Language Processing in Python - Step 4
-
Урок 184.
00:17:25
Natural Language Processing in Python - Step 5
-
Урок 185.
00:09:53
Natural Language Processing in Python - Step 6
-
Урок 186.
00:16:36
Natural Language Processing in R - Step 1
-
Урок 187.
00:08:40
Natural Language Processing in R - Step 2
-
Урок 188.
00:06:29
Natural Language Processing in R - Step 3
-
Урок 189.
00:02:59
Natural Language Processing in R - Step 4
-
Урок 190.
00:02:06
Natural Language Processing in R - Step 5
-
Урок 191.
00:05:50
Natural Language Processing in R - Step 6
-
Урок 192.
00:03:28
Natural Language Processing in R - Step 7
-
Урок 193.
00:05:21
Natural Language Processing in R - Step 8
-
Урок 194.
00:12:51
Natural Language Processing in R - Step 9
-
Урок 195.
00:17:32
Natural Language Processing in R - Step 10
-
Урок 196.
00:12:35
What is Deep Learning?
-
Урок 197.
00:02:53
Plan of attack
-
Урок 198.
00:16:26
The Neuron
-
Урок 199.
00:08:30
The Activation Function
-
Урок 200.
00:12:49
How do Neural Networks work?
-
Урок 201.
00:13:00
How do Neural Networks learn?
-
Урок 202.
00:10:14
Gradient Descent
-
Урок 203.
00:08:45
Stochastic Gradient Descent
-
Урок 204.
00:05:23
Backpropagation
-
Урок 205.
00:05:00
Business Problem Description
-
Урок 206.
00:10:22
ANN in Python - Step 1
-
Урок 207.
00:18:37
ANN in Python - Step 2
-
Урок 208.
00:14:29
ANN in Python - Step 3
-
Урок 209.
00:11:59
ANN in Python - Step 4
-
Урок 210.
00:16:26
ANN in Python - Step 5
-
Урок 211.
00:17:18
ANN in R - Step 1
-
Урок 212.
00:06:31
ANN in R - Step 2
-
Урок 213.
00:12:31
ANN in R - Step 3
-
Урок 214.
00:14:08
ANN in R - Step 4 (Last step)
-
Урок 215.
00:03:32
Plan of attack
-
Урок 216.
00:15:50
What are convolutional neural networks?
-
Урок 217.
00:16:39
Step 1 - Convolution Operation
-
Урок 218.
00:06:42
Step 1(b) - ReLU Layer
-
Урок 219.
00:14:14
Step 2 - Pooling
-
Урок 220.
00:01:53
Step 3 - Flattening
-
Урок 221.
00:19:26
Step 4 - Full Connection
-
Урок 222.
00:04:20
Summary
-
Урок 223.
00:18:21
Softmax & Cross-Entropy
-
Урок 224.
00:11:36
CNN in Python - Step 1
-
Урок 225.
00:17:47
CNN in Python - Step 2
-
Урок 226.
00:17:57
CNN in Python - Step 3
-
Урок 227.
00:07:22
CNN in Python - Step 4
-
Урок 228.
00:14:56
CNN in Python - Step 5
-
Урок 229.
00:23:39
CNN in Python - FINAL DEMO!
-
Урок 230.
00:03:50
Principal Component Analysis (PCA) Intuition
-
Урок 231.
00:16:53
PCA in Python - Step 1
-
Урок 232.
00:05:31
PCA in Python - Step 2
-
Урок 233.
00:12:09
PCA in R - Step 1
-
Урок 234.
00:11:23
PCA in R - Step 2
-
Урок 235.
00:13:43
PCA in R - Step 3
-
Урок 236.
00:03:51
Linear Discriminant Analysis (LDA) Intuition
-
Урок 237.
00:14:53
LDA in Python
-
Урок 238.
00:20:01
LDA in R
-
Урок 239.
00:11:04
Kernel PCA in Python
-
Урок 240.
00:20:31
Kernel PCA in R
-
Урок 241.
00:17:56
k-Fold Cross Validation in Python
-
Урок 242.
00:21:57
Grid Search in Python
-
Урок 243.
00:19:30
k-Fold Cross Validation in R
-
Урок 244.
00:14:00
Grid Search in R
-
Урок 245.
00:14:49
XGBoost in Python
-
Урок 246.
00:18:15
XGBoost in R
-
Урок 247.
00:02:41
THANK YOU Bonus Video