Урок 1.00:03:23
Applications of Machine Learning
Урок 2.00:06:39
Why Machine Learning is the Future
Урок 3.00:16:49
Presentation of the ML A-Z folder, Colaboratory, Jupyter Notebook and Spyder
Урок 4.00:05:41
Installing R and R Studio (Mac, Linux & Windows)
Урок 5.00:10:51
Getting Started
Урок 6.00:03:35
Importing the Libraries
Урок 7.00:15:43
Importing the Dataset
Урок 8.00:12:16
Taking care of Missing Data
Урок 9.00:14:59
Encoding Categorical Data
Урок 10.00:13:48
Splitting the dataset into the Training set and Test set
Урок 11.00:20:32
Feature Scaling
Урок 12.00:01:36
Getting Started
Урок 13.00:01:58
Dataset Description
Урок 14.00:02:45
Importing the Dataset
Урок 15.00:06:23
Taking care of Missing Data
Урок 16.00:06:03
Encoding Categorical Data
Урок 17.00:09:35
Splitting the dataset into the Training set and Test set
Урок 18.00:09:15
Feature Scaling
Урок 19.00:05:16
Data Preprocessing Template
Урок 20.00:05:46
Simple Linear Regression Intuition - Step 1
Урок 21.00:03:10
Simple Linear Regression Intuition - Step 2
Урок 22.00:12:49
Simple Linear Regression in Python - Step 1
Урок 23.00:07:57
Simple Linear Regression in Python - Step 2
Урок 24.00:04:36
Simple Linear Regression in Python - Step 3
Урок 25.00:12:57
Simple Linear Regression in Python - Step 4
Урок 26.00:04:41
Simple Linear Regression in R - Step 1
Урок 27.00:05:59
Simple Linear Regression in R - Step 2
Урок 28.00:03:40
Simple Linear Regression in R - Step 3
Урок 29.00:15:57
Simple Linear Regression in R - Step 4
Урок 30.00:03:45
Dataset + Business Problem Description
Урок 31.00:01:04
Multiple Linear Regression Intuition - Step 1
Урок 32.00:01:01
Multiple Linear Regression Intuition - Step 2
Урок 33.00:07:22
Multiple Linear Regression Intuition - Step 3
Урок 34.00:02:11
Multiple Linear Regression Intuition - Step 4
Урок 35.00:11:45
Understanding the P-Value
Урок 36.00:15:42
Multiple Linear Regression Intuition - Step 5
Урок 37.00:08:31
Multiple Linear Regression in Python - Step 1
Урок 38.00:09:12
Multiple Linear Regression in Python - Step 2
Урок 39.00:10:38
Multiple Linear Regression in Python - Step 3
Урок 40.00:12:32
Multiple Linear Regression in Python - Step 4
Урок 41.00:07:51
Multiple Linear Regression in R - Step 1
Урок 42.00:10:27
Multiple Linear Regression in R - Step 2
Урок 43.00:04:28
Multiple Linear Regression in R - Step 3
Урок 44.00:17:52
Multiple Linear Regression in R - Backward Elimination - HOMEWORK !
Урок 45.00:07:35
Multiple Linear Regression in R - Backward Elimination - Homework Solution
Урок 46.00:05:10
Polynomial Regression Intuition
Урок 47.00:13:31
Polynomial Regression in Python - Step 1
Урок 48.00:11:41
Polynomial Regression in Python - Step 2
Урок 49.00:12:55
Polynomial Regression in Python - Step 3
Урок 50.00:08:11
Polynomial Regression in Python - Step 4
Урок 51.00:09:14
Polynomial Regression in R - Step 1
Урок 52.00:09:59
Polynomial Regression in R - Step 2
Урок 53.00:19:55
Polynomial Regression in R - Step 3
Урок 54.00:09:36
Polynomial Regression in R - Step 4
Урок 55.00:11:59
R Regression Template
Урок 56.00:08:10
SVR Intuition (Updated!)
Урок 57.00:03:58
Heads-up on non-linear SVR
Урок 58.00:09:16
SVR in Python - Step 1
Урок 59.00:15:11
SVR in Python - Step 2
Урок 60.00:06:28
SVR in Python - Step 3
Урок 61.00:08:02
SVR in Python - Step 4
Урок 62.00:15:41
SVR in Python - Step 5
Урок 63.00:11:45
SVR in R
Урок 64.00:11:07
Decision Tree Regression Intuition
Урок 65.00:08:39
Decision Tree Regression in Python - Step 1
Урок 66.00:05:01
Decision Tree Regression in Python - Step 2
Урок 67.00:03:17
Decision Tree Regression in Python - Step 3
Урок 68.00:09:51
Decision Tree Regression in Python - Step 4
Урок 69.00:19:55
Decision Tree Regression in R
Урок 70.00:06:45
Random Forest Regression Intuition
Урок 71.00:13:24
Random Forest Regression in Python
Урок 72.00:17:44
Random Forest Regression in R
Урок 73.00:05:12
R-Squared Intuition
Урок 74.00:09:58
Adjusted R-Squared Intuition
Урок 75.00:19:27
Preparation of the Regression Code Templates
Урок 76.00:09:04
THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION!
Урок 77.00:08:55
Evaluating Regression Models Performance - Homework's Final Part
Урок 78.00:09:17
Interpreting Linear Regression Coefficients
Урок 79.00:17:08
Logistic Regression Intuition
Урок 80.00:09:44
Logistic Regression in Python - Step 1
Урок 81.00:13:39
Logistic Regression in Python - Step 2
Урок 82.00:07:41
Logistic Regression in Python - Step 3
Урок 83.00:07:50
Logistic Regression in Python - Step 4
Урок 84.00:06:16
Logistic Regression in Python - Step 5
Урок 85.00:09:27
Logistic Regression in Python - Step 6
Урок 86.00:16:07
Logistic Regression in Python - Step 7
Урок 87.00:06:00
Logistic Regression in R - Step 1
Урок 88.00:03:00
Logistic Regression in R - Step 2
Урок 89.00:05:24
Logistic Regression in R - Step 3
Урок 90.00:02:49
Logistic Regression in R - Step 4
Урок 91.00:19:25
Logistic Regression in R - Step 5
Урок 92.00:04:18
R Classification Template
Урок 93.00:04:54
K-Nearest Neighbor Intuition
Урок 94.00:19:59
K-NN in Python
Урок 95.00:15:48
K-NN in R
Урок 96.00:09:50
SVM Intuition
Урок 97.00:14:53
SVM in Python
Урок 98.00:12:10
SVM in R
Урок 99.00:03:18
Kernel SVM Intuition
Урок 100.00:07:51
Mapping to a higher dimension
Урок 101.00:12:21
The Kernel Trick
Урок 102.00:03:48
Types of Kernel Functions
Урок 103.00:10:56
Non-Linear Kernel SVR (Advanced)
Урок 104.00:13:04
Kernel SVM in Python
Урок 105.00:16:35
Kernel SVM in R
Урок 106.00:20:26
Bayes Theorem
Урок 107.00:14:04
Naive Bayes Intuition
Урок 108.00:06:05
Naive Bayes Intuition (Challenge Reveal)
Урок 109.00:09:43
Naive Bayes Intuition (Extras)
Урок 110.00:14:20
Naive Bayes in Python
Урок 111.00:14:54
Naive Bayes in R
Урок 112.00:08:09
Decision Tree Classification Intuition
Урок 113.00:14:04
Decision Tree Classification in Python
Урок 114.00:19:49
Decision Tree Classification in R
Урок 115.00:04:29
Random Forest Classification Intuition
Урок 116.00:13:29
Random Forest Classification in Python
Урок 117.00:19:57
Random Forest Classification in R
Урок 118.00:21:01
THE ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION!
Урок 119.00:07:59
False Positives & False Negatives
Урок 120.00:04:58
Confusion Matrix
Урок 121.00:02:13
Accuracy Paradox
Урок 122.00:11:17
CAP Curve
Урок 123.00:06:20
CAP Curve Analysis
Урок 124.00:14:18
K-Means Clustering Intuition
Урок 125.00:07:49
K-Means Random Initialization Trap
Урок 126.00:11:52
K-Means Selecting The Number Of Clusters
Урок 127.00:08:26
K-Means Clustering in Python - Step 1
Урок 128.00:10:37
K-Means Clustering in Python - Step 2
Урок 129.00:16:59
K-Means Clustering in Python - Step 3
Урок 130.00:06:45
K-Means Clustering in Python - Step 4
Урок 131.00:19:36
K-Means Clustering in Python - Step 5
Урок 132.00:11:48
K-Means Clustering in R
Урок 133.00:08:49
Hierarchical Clustering Intuition
Урок 134.00:08:49
Hierarchical Clustering How Dendrograms Work
Урок 135.00:11:22
Hierarchical Clustering Using Dendrograms
Урок 136.00:06:57
Hierarchical Clustering in Python - Step 1
Урок 137.00:17:13
Hierarchical Clustering in Python - Step 2
Урок 138.00:12:20
Hierarchical Clustering in Python - Step 3
Урок 139.00:03:46
Hierarchical Clustering in R - Step 1
Урок 140.00:05:25
Hierarchical Clustering in R - Step 2
Урок 141.00:03:20
Hierarchical Clustering in R - Step 3
Урок 142.00:02:46
Hierarchical Clustering in R - Step 4
Урок 143.00:02:34
Hierarchical Clustering in R - Step 5
Урок 144.00:18:14
Apriori Intuition
Урок 145.00:08:47
Apriori in Python - Step 1
Урок 146.00:17:08
Apriori in Python - Step 2
Урок 147.00:12:49
Apriori in Python - Step 3
Урок 148.00:19:42
Apriori in Python - Step 4
Урок 149.00:19:54
Apriori in R - Step 1
Урок 150.00:14:26
Apriori in R - Step 2
Урок 151.00:19:19
Apriori in R - Step 3
Урок 152.00:06:06
Eclat Intuition
Урок 153.00:12:01
Eclat in Python
Урок 154.00:10:10
Eclat in R
Урок 155.00:15:37
The Multi-Armed Bandit Problem
Урок 156.00:14:54
Upper Confidence Bound (UCB) Intuition
Урок 157.00:12:43
Upper Confidence Bound in Python - Step 1
Урок 158.00:03:52
Upper Confidence Bound in Python - Step 2
Урок 159.00:07:17
Upper Confidence Bound in Python - Step 3
Урок 160.00:15:46
Upper Confidence Bound in Python - Step 4
Урок 161.00:06:13
Upper Confidence Bound in Python - Step 5
Урок 162.00:07:29
Upper Confidence Bound in Python - Step 6
Урок 163.00:08:10
Upper Confidence Bound in Python - Step 7
Урок 164.00:13:40
Upper Confidence Bound in R - Step 1
Урок 165.00:16:00
Upper Confidence Bound in R - Step 2
Урок 166.00:17:39
Upper Confidence Bound in R - Step 3
Урок 167.00:03:19
Upper Confidence Bound in R - Step 4
Урок 168.00:19:13
Thompson Sampling Intuition
Урок 169.00:08:13
Algorithm Comparison: UCB vs Thompson Sampling
Урок 170.00:05:48
Thompson Sampling in Python - Step 1
Урок 171.00:12:20
Thompson Sampling in Python - Step 2
Урок 172.00:14:04
Thompson Sampling in Python - Step 3
Урок 173.00:07:46
Thompson Sampling in Python - Step 4
Урок 174.00:19:02
Thompson Sampling in R - Step 1
Урок 175.00:03:28
Thompson Sampling in R - Step 2
Урок 176.00:03:03
NLP Intuition
Урок 177.00:04:12
Types of Natural Language Processing
Урок 178.00:11:23
Classical vs Deep Learning Models
Урок 179.00:17:06
Bag-Of-Words Model
Урок 180.00:07:14
Natural Language Processing in Python - Step 1
Урок 181.00:06:46
Natural Language Processing in Python - Step 2
Урок 182.00:12:55
Natural Language Processing in Python - Step 3
Урок 183.00:11:01
Natural Language Processing in Python - Step 4
Урок 184.00:17:25
Natural Language Processing in Python - Step 5
Урок 185.00:09:53
Natural Language Processing in Python - Step 6
Урок 186.00:16:36
Natural Language Processing in R - Step 1
Урок 187.00:08:40
Natural Language Processing in R - Step 2
Урок 188.00:06:29
Natural Language Processing in R - Step 3
Урок 189.00:02:59
Natural Language Processing in R - Step 4
Урок 190.00:02:06
Natural Language Processing in R - Step 5
Урок 191.00:05:50
Natural Language Processing in R - Step 6
Урок 192.00:03:28
Natural Language Processing in R - Step 7
Урок 193.00:05:21
Natural Language Processing in R - Step 8
Урок 194.00:12:51
Natural Language Processing in R - Step 9
Урок 195.00:17:32
Natural Language Processing in R - Step 10
Урок 196.00:12:35
What is Deep Learning?
Урок 197.00:02:53
Plan of attack
Урок 198.00:16:26
The Neuron
Урок 199.00:08:30
The Activation Function
Урок 200.00:12:49
How do Neural Networks work?
Урок 201.00:13:00
How do Neural Networks learn?
Урок 202.00:10:14
Gradient Descent
Урок 203.00:08:45
Stochastic Gradient Descent
Урок 204.00:05:23
Backpropagation
Урок 205.00:05:00
Business Problem Description
Урок 206.00:10:22
ANN in Python - Step 1
Урок 207.00:18:37
ANN in Python - Step 2
Урок 208.00:14:29
ANN in Python - Step 3
Урок 209.00:11:59
ANN in Python - Step 4
Урок 210.00:16:26
ANN in Python - Step 5
Урок 211.00:17:18
ANN in R - Step 1
Урок 212.00:06:31
ANN in R - Step 2
Урок 213.00:12:31
ANN in R - Step 3
Урок 214.00:14:08
ANN in R - Step 4 (Last step)
Урок 215.00:03:32
Plan of attack
Урок 216.00:15:50
What are convolutional neural networks?
Урок 217.00:16:39
Step 1 - Convolution Operation
Урок 218.00:06:42
Step 1(b) - ReLU Layer
Урок 219.00:14:14
Step 2 - Pooling
Урок 220.00:01:53
Step 3 - Flattening
Урок 221.00:19:26
Step 4 - Full Connection
Урок 222.00:04:20
Summary
Урок 223.00:18:21
Softmax & Cross-Entropy
Урок 224.00:11:36
CNN in Python - Step 1
Урок 225.00:17:47
CNN in Python - Step 2
Урок 226.00:17:57
CNN in Python - Step 3
Урок 227.00:07:22
CNN in Python - Step 4
Урок 228.00:14:56
CNN in Python - Step 5
Урок 229.00:23:39
CNN in Python - FINAL DEMO!
Урок 230.00:03:50
Principal Component Analysis (PCA) Intuition
Урок 231.00:16:53
PCA in Python - Step 1
Урок 232.00:05:31
PCA in Python - Step 2
Урок 233.00:12:09
PCA in R - Step 1
Урок 234.00:11:23
PCA in R - Step 2
Урок 235.00:13:43
PCA in R - Step 3
Урок 236.00:03:51
Linear Discriminant Analysis (LDA) Intuition
Урок 237.00:14:53
LDA in Python
Урок 238.00:20:01
LDA in R
Урок 239.00:11:04
Kernel PCA in Python
Урок 240.00:20:31
Kernel PCA in R
Урок 241.00:17:56
k-Fold Cross Validation in Python
Урок 242.00:21:57
Grid Search in Python
Урок 243.00:19:30
k-Fold Cross Validation in R
Урок 244.00:14:00
Grid Search in R
Урок 245.00:14:49
XGBoost in Python
Урок 246.00:18:15
XGBoost in R
Урок 247.00:02:41
THANK YOU Bonus Video