-
Урок 1.
00:02:35
Introduction to Course
-
Урок 2.
00:02:03
Course Curriculum
-
Урок 3.
00:03:51
What is Data Science?
-
Урок 4.
00:06:20
Windows Installation Procedure
-
Урок 5.
00:05:28
Mac OS Installation Procedure
-
Урок 6.
00:00:22
Development Environment Overview
-
Урок 7.
00:09:01
Course Notes
-
Урок 8.
00:12:34
Guide to RStudio
-
Урок 9.
00:02:28
Introduction to R Basics
-
Урок 10.
00:04:31
Arithmetic in R
-
Урок 11.
00:05:26
Variables
-
Урок 12.
00:05:32
R Basic Data Types
-
Урок 13.
00:07:36
Vector Basics
-
Урок 14.
00:04:24
Vector Operations
-
Урок 15.
00:09:37
Vector Indexing and Slicing
-
Урок 16.
00:02:13
Getting Help with R and RStudio
-
Урок 17.
00:06:32
Comparison Operators
-
Урок 18.
00:02:14
R Basics Training Exercise
-
Урок 19.
00:07:22
R Basics Training Exercise - Solutions Walkthrough
-
Урок 20.
00:00:49
Introduction to R Matrices
-
Урок 21.
00:10:24
Creating a Matrix
-
Урок 22.
00:04:16
Matrix Arithmetic
-
Урок 23.
00:05:23
Matrix Operations
-
Урок 24.
00:06:35
Matrix Selection and Indexing
-
Урок 25.
00:08:15
Factor and Categorical Matrices
-
Урок 26.
00:01:01
Matrix Training Exercise
-
Урок 27.
00:13:11
Matrix Training Exercises - Solutions Walkthrough
-
Урок 28.
00:00:45
Introduction to R Data Frames
-
Урок 29.
00:08:44
Data Frame Basics
-
Урок 30.
00:09:16
Data Frame Indexing and Selection
-
Урок 31.
00:15:59
Overview of Data Frame Operations - Part 1
-
Урок 32.
00:18:41
Overview of Data Frame Operations - Part 2
-
Урок 33.
00:01:07
Data Frame Training Exercise
-
Урок 34.
00:15:09
Data Frame Training Exercises - Solutions Walkthrough
-
Урок 35.
00:09:01
List Basics
-
Урок 36.
00:00:25
Introduction to Data Input and Output with R
-
Урок 37.
00:06:10
CSV Files with R
-
Урок 38.
00:11:44
Excel Files with R
-
Урок 39.
00:09:57
SQL with R
-
Урок 40.
00:06:53
Web Scraping with R
-
Урок 41.
00:00:59
Introduction to Programming Basics
-
Урок 42.
00:08:06
Logical Operators
-
Урок 43.
00:15:01
if, else, and else if Statements
-
Урок 44.
00:01:28
Conditional Statements Training Exercise
-
Урок 45.
00:12:06
Conditional Statements Training Exercise - Solutions Walkthrough
-
Урок 46.
00:06:54
While Loops
-
Урок 47.
00:12:29
For Loops
-
Урок 48.
00:19:16
Functions
-
Урок 49.
00:02:15
Functions Training Exercise
-
Урок 50.
00:20:16
Functions Training Exercise - Solutions
-
Урок 51.
00:00:55
Introduction to Advanced R Programming
-
Урок 52.
00:09:50
Built-in R Features
-
Урок 53.
00:15:17
Apply
-
Урок 54.
00:03:23
Math Functions with R
-
Урок 55.
00:05:17
Regular Expressions
-
Урок 56.
00:12:08
Dates and Timestamps
-
Урок 57.
00:00:41
Data Manipulation Overview
-
Урок 58.
00:11:43
Guide to Using Dplyr
-
Урок 59.
00:10:05
Guide to Using Dplyr - Part 2
-
Урок 60.
00:06:20
Pipe Operator
-
Урок 61.
00:01:10
Dplyr Training Exercise
-
Урок 62.
00:06:48
Dplyr Training Exercise - Solutions Walkthrough
-
Урок 63.
00:20:32
Guide to Using Tidyr
-
Урок 64.
00:06:44
Overview of ggplot2
-
Урок 65.
00:18:38
Histograms
-
Урок 66.
00:17:01
Scatterplots
-
Урок 67.
00:07:58
Barplots
-
Урок 68.
00:07:03
Boxplots
-
Урок 69.
00:07:49
2 Variable Plotting
-
Урок 70.
00:10:48
Coordinates and Faceting
-
Урок 71.
00:05:24
Themes
-
Урок 72.
00:02:30
ggplot2 Exercises
-
Урок 73.
00:12:52
ggplot2 Exercise Solutions
-
Урок 74.
00:02:48
Data Visualization Project
-
Урок 75.
00:10:57
Data Visualization Project - Solutions Walkthrough - Part 1
-
Урок 76.
00:10:49
Data Visualization Project Solutions Walkthrough - Part 2
-
Урок 77.
00:08:50
Overview of Plotly and Interactive Visualizations
-
Урок 78.
00:07:56
Introduction to Capstone Project
-
Урок 79.
00:22:00
Capstone Project Solutions Walkthrough
-
Урок 80.
00:16:49
Introduction to Machine Learning
-
Урок 81.
00:05:27
Introduction to Linear Regression
-
Урок 82.
00:19:41
Linear Regression with R - Part 1
-
Урок 83.
00:20:12
Linear Regression with R - Part 2
-
Урок 84.
00:11:55
Linear Regression with R - Part 3
-
Урок 85.
00:08:29
Introduction to Linear Regression Project
-
Урок 86.
00:21:24
ML - Linear Regression Project - Solutions Part 1
-
Урок 87.
00:10:56
ML - Linear Regression Project - Solutions Part 2
-
Урок 88.
00:11:38
Introduction to Logistic Regression
-
Урок 89.
00:20:01
Logistic Regression with R - Part 1
-
Урок 90.
00:18:42
Logistic Regression with R - Part 2
-
Урок 91.
00:01:41
Introduction to Logistic Regression Project
-
Урок 92.
00:20:03
Logistic Regression Project Solutions - Part 1
-
Урок 93.
00:15:05
Logistic Regression Project Solutions - Part 2
-
Урок 94.
00:13:10
Logistic Regression Project - Solutions Part 3
-
Урок 95.
00:05:01
Introduction to K Nearest Neighbors
-
Урок 96.
00:19:06
K Nearest Neighbors with R
-
Урок 97.
00:03:18
Introduction K Nearest Neighbors Project
-
Урок 98.
00:11:23
K Nearest Neighbors Project Solutions
-
Урок 99.
00:06:31
Introduction to Tree Methods
-
Урок 100.
00:12:02
Decision Trees and Random Forests with R
-
Урок 101.
00:01:42
Introduction to Decision Trees and Random Forests Project
-
Урок 102.
00:16:43
Tree Methods Project Solutions - Part 1
-
Урок 103.
00:04:47
Tree Methods Project Solutions - Part 2
-
Урок 104.
00:04:14
Introduction to Support Vector Machines
-
Урок 105.
00:14:51
Support Vector Machines with R
-
Урок 106.
00:02:14
Introduction to SVM Project
-
Урок 107.
00:11:05
Support Vector Machines Project - Solutions Part 1
-
Урок 108.
00:10:19
Support Vector Machines Project - Solutions Part 2
-
Урок 109.
00:04:51
Introduction to K-Means Clustering
-
Урок 110.
00:09:34
K Means Clustering with R
-
Урок 111.
00:01:57
Introduction to K Means Clustering Project
-
Урок 112.
00:17:13
K Means Clustering Project - Solutions Walkthrough
-
Урок 113.
00:04:26
Introduction to Natural Language Processing
-
Урок 114.
00:04:51
Natural Language Processing with R - Part 1
-
Урок 115.
00:15:57
Natural Language Processing with R - Part 2
-
Урок 116.
00:06:14
Introduction to Neural Nets
-
Урок 117.
00:21:53
Neural Nets with R
-
Урок 118.
00:02:09
Introduction to Neural Nets Project
-
Урок 119.
00:09:13
Neural Nets Project - Solutions