Урок 1.00:02:35
Introduction to Course
Урок 2.00:02:03
Course Curriculum
Урок 3.00:03:51
What is Data Science?
Урок 4.00:06:20
Windows Installation Procedure
Урок 5.00:05:28
Mac OS Installation Procedure
Урок 6.00:00:22
Development Environment Overview
Урок 7.00:09:01
Course Notes
Урок 8.00:12:34
Guide to RStudio
Урок 9.00:02:28
Introduction to R Basics
Урок 10.00:04:31
Arithmetic in R
Урок 11.00:05:26
Variables
Урок 12.00:05:32
R Basic Data Types
Урок 13.00:07:36
Vector Basics
Урок 14.00:04:24
Vector Operations
Урок 15.00:09:37
Vector Indexing and Slicing
Урок 16.00:02:13
Getting Help with R and RStudio
Урок 17.00:06:32
Comparison Operators
Урок 18.00:02:14
R Basics Training Exercise
Урок 19.00:07:22
R Basics Training Exercise - Solutions Walkthrough
Урок 20.00:00:49
Introduction to R Matrices
Урок 21.00:10:24
Creating a Matrix
Урок 22.00:04:16
Matrix Arithmetic
Урок 23.00:05:23
Matrix Operations
Урок 24.00:06:35
Matrix Selection and Indexing
Урок 25.00:08:15
Factor and Categorical Matrices
Урок 26.00:01:01
Matrix Training Exercise
Урок 27.00:13:11
Matrix Training Exercises - Solutions Walkthrough
Урок 28.00:00:45
Introduction to R Data Frames
Урок 29.00:08:44
Data Frame Basics
Урок 30.00:09:16
Data Frame Indexing and Selection
Урок 31.00:15:59
Overview of Data Frame Operations - Part 1
Урок 32.00:18:41
Overview of Data Frame Operations - Part 2
Урок 33.00:01:07
Data Frame Training Exercise
Урок 34.00:15:09
Data Frame Training Exercises - Solutions Walkthrough
Урок 35.00:09:01
List Basics
Урок 36.00:00:25
Introduction to Data Input and Output with R
Урок 37.00:06:10
CSV Files with R
Урок 38.00:11:44
Excel Files with R
Урок 39.00:09:57
SQL with R
Урок 40.00:06:53
Web Scraping with R
Урок 41.00:00:59
Introduction to Programming Basics
Урок 42.00:08:06
Logical Operators
Урок 43.00:15:01
if, else, and else if Statements
Урок 44.00:01:28
Conditional Statements Training Exercise
Урок 45.00:12:06
Conditional Statements Training Exercise - Solutions Walkthrough
Урок 46.00:06:54
While Loops
Урок 47.00:12:29
For Loops
Урок 48.00:19:16
Functions
Урок 49.00:02:15
Functions Training Exercise
Урок 50.00:20:16
Functions Training Exercise - Solutions
Урок 51.00:00:55
Introduction to Advanced R Programming
Урок 52.00:09:50
Built-in R Features
Урок 53.00:15:17
Apply
Урок 54.00:03:23
Math Functions with R
Урок 55.00:05:17
Regular Expressions
Урок 56.00:12:08
Dates and Timestamps
Урок 57.00:00:41
Data Manipulation Overview
Урок 58.00:11:43
Guide to Using Dplyr
Урок 59.00:10:05
Guide to Using Dplyr - Part 2
Урок 60.00:06:20
Pipe Operator
Урок 61.00:01:10
Dplyr Training Exercise
Урок 62.00:06:48
Dplyr Training Exercise - Solutions Walkthrough
Урок 63.00:20:32
Guide to Using Tidyr
Урок 64.00:06:44
Overview of ggplot2
Урок 65.00:18:38
Histograms
Урок 66.00:17:01
Scatterplots
Урок 67.00:07:58
Barplots
Урок 68.00:07:03
Boxplots
Урок 69.00:07:49
2 Variable Plotting
Урок 70.00:10:48
Coordinates and Faceting
Урок 71.00:05:24
Themes
Урок 72.00:02:30
ggplot2 Exercises
Урок 73.00:12:52
ggplot2 Exercise Solutions
Урок 74.00:02:48
Data Visualization Project
Урок 75.00:10:57
Data Visualization Project - Solutions Walkthrough - Part 1
Урок 76.00:10:49
Data Visualization Project Solutions Walkthrough - Part 2
Урок 77.00:08:50
Overview of Plotly and Interactive Visualizations
Урок 78.00:07:56
Introduction to Capstone Project
Урок 79.00:22:00
Capstone Project Solutions Walkthrough
Урок 80.00:16:49
Introduction to Machine Learning
Урок 81.00:05:27
Introduction to Linear Regression
Урок 82.00:19:41
Linear Regression with R - Part 1
Урок 83.00:20:12
Linear Regression with R - Part 2
Урок 84.00:11:55
Linear Regression with R - Part 3
Урок 85.00:08:29
Introduction to Linear Regression Project
Урок 86.00:21:24
ML - Linear Regression Project - Solutions Part 1
Урок 87.00:10:56
ML - Linear Regression Project - Solutions Part 2
Урок 88.00:11:38
Introduction to Logistic Regression
Урок 89.00:20:01
Logistic Regression with R - Part 1
Урок 90.00:18:42
Logistic Regression with R - Part 2
Урок 91.00:01:41
Introduction to Logistic Regression Project
Урок 92.00:20:03
Logistic Regression Project Solutions - Part 1
Урок 93.00:15:05
Logistic Regression Project Solutions - Part 2
Урок 94.00:13:10
Logistic Regression Project - Solutions Part 3
Урок 95.00:05:01
Introduction to K Nearest Neighbors
Урок 96.00:19:06
K Nearest Neighbors with R
Урок 97.00:03:18
Introduction K Nearest Neighbors Project
Урок 98.00:11:23
K Nearest Neighbors Project Solutions
Урок 99.00:06:31
Introduction to Tree Methods
Урок 100.00:12:02
Decision Trees and Random Forests with R
Урок 101.00:01:42
Introduction to Decision Trees and Random Forests Project
Урок 102.00:16:43
Tree Methods Project Solutions - Part 1
Урок 103.00:04:47
Tree Methods Project Solutions - Part 2
Урок 104.00:04:14
Introduction to Support Vector Machines
Урок 105.00:14:51
Support Vector Machines with R
Урок 106.00:02:14
Introduction to SVM Project
Урок 107.00:11:05
Support Vector Machines Project - Solutions Part 1
Урок 108.00:10:19
Support Vector Machines Project - Solutions Part 2
Урок 109.00:04:51
Introduction to K-Means Clustering
Урок 110.00:09:34
K Means Clustering with R
Урок 111.00:01:57
Introduction to K Means Clustering Project
Урок 112.00:17:13
K Means Clustering Project - Solutions Walkthrough
Урок 113.00:04:26
Introduction to Natural Language Processing
Урок 114.00:04:51
Natural Language Processing with R - Part 1
Урок 115.00:15:57
Natural Language Processing with R - Part 2
Урок 116.00:06:14
Introduction to Neural Nets
Урок 117.00:21:53
Neural Nets with R
Урок 118.00:02:09
Introduction to Neural Nets Project
Урок 119.00:09:13
Neural Nets Project - Solutions