-
Урок 1. 00:13:59Introduction to the course
-
Урок 2. 00:09:02Introduction to Kaggle
-
Урок 3. 00:09:02Installation of Python and Anaconda
-
Урок 4. 00:03:34Python Introduction
-
Урок 5. 00:15:05Variables in Python
-
Урок 6. 00:05:28Numeric Operations in Python
-
Урок 7. 00:02:25Logical Operations
-
Урок 8. 00:08:16If else Loop
-
Урок 9. 00:10:18for while Loop
-
Урок 10. 00:11:19Functions
-
Урок 11. 00:12:43String Part1
-
Урок 12. 00:03:02String Part2
-
Урок 13. 00:03:06List Part1
-
Урок 14. 00:10:49List Part2
-
Урок 15. 00:08:53List Part3
-
Урок 16. 00:08:11List Part4
-
Урок 17. 00:08:42Tuples
-
Урок 18. 00:07:28Sets
-
Урок 19. 00:07:36Dictionaries
-
Урок 20. 00:07:09Comprehentions
-
Урок 21. 00:06:20Introduction
-
Урок 22. 00:19:21Numpy Operations Part1
-
Урок 23. 00:24:27Numpy Operations Part2
-
Урок 24. 00:06:30Introduction
-
Урок 25. 00:07:59Series
-
Урок 26. 00:07:54DataFrame
-
Урок 27. 00:01:24Operations Part1
-
Урок 28. 00:05:11Operations Part2
-
Урок 29. 00:06:07Indexes
-
Урок 30. 00:07:28loc and iloc
-
Урок 31. 00:05:29Reading CSV
-
Урок 32. 00:03:44Merging Part1
-
Урок 33. 00:05:26groupby
-
Урок 34. 00:04:26Merging Part2
-
Урок 35. 00:03:25Pivot Table
-
Урок 36. 00:43:18Linear Algebra : Vectors
-
Урок 37. 00:15:44Linear Algebra : Matrix Part1
-
Урок 38. 00:16:22Linear Algebra : Matrix Part2
-
Урок 39. 00:08:45Linear Algebra : Going From 2D to nD Part1
-
Урок 40. 00:06:54Linear Algebra : 2D to nD Part2
-
Урок 41. 00:03:02Inferential Statistics
-
Урок 42. 00:13:16Probability Theory
-
Урок 43. 00:05:00Probability Distribution
-
Урок 44. 00:04:53Expected Values Part1
-
Урок 45. 00:03:15Expected Values Part2
-
Урок 46. 00:06:02Without Experiment
-
Урок 47. 00:04:12Binomial Distribution
-
Урок 48. 00:02:25Commulative Distribution
-
Урок 49. 00:04:44PDF
-
Урок 50. 00:05:01Normal Distribution
-
Урок 51. 00:04:45z Score
-
Урок 52. 00:09:42Sampling
-
Урок 53. 00:06:17Sampling Distribution
-
Урок 54. 00:03:08Central Limit Theorem
-
Урок 55. 00:07:15Confidence Interval Part1
-
Урок 56. 00:03:19Confidence Interval Part2
-
Урок 57. 00:08:30Introduction
-
Урок 58. 00:06:29NULL And Alternate Hypothesis
-
Урок 59. 00:05:47Examples
-
Урок 60. 00:08:02One/Two Tailed Tests
-
Урок 61. 00:04:19Critical Value Method
-
Урок 62. 00:07:37z Table
-
Урок 63. 00:03:18Examples
-
Урок 64. 00:03:03More Examples
-
Урок 65. 00:05:16p Value
-
Урок 66. 00:02:54Types of Error
-
Урок 67. 00:03:28t- distribution Part1
-
Урок 68. 00:02:43t- distribution Part2
-
Урок 69. 00:19:55Matplotlib
-
Урок 70. 00:20:26Seaborn
-
Урок 71. 00:10:24Case Study
-
Урок 72. 00:04:27Seaborn On Time Series Data
-
Урок 73. 00:01:07Introduction
-
Урок 74. 00:05:07Data Sourcing and Cleaning part1
-
Урок 75. 00:03:15Data Sourcing and Cleaning part2
-
Урок 76. 00:04:00Data Sourcing and Cleaning part3
-
Урок 77. 00:03:57Data Sourcing and Cleaning part4
-
Урок 78. 00:03:31Data Sourcing and Cleaning part5
-
Урок 79. 00:04:15Data Sourcing and Cleaning part6
-
Урок 80. 00:14:42Data Cleaning part1
-
Урок 81. 00:09:27Data Cleaning part2
-
Урок 82. 00:22:23Univariate Analysis Part1
-
Урок 83. 00:17:33Univariate Analysis Part2
-
Урок 84. 00:06:47Segmented Analysis
-
Урок 85. 00:13:00Bivariate Analysis
-
Урок 86. 00:12:15Derived Columns
-
Урок 87. 00:02:14Introduction to Machine Learning
-
Урок 88. 00:08:57Types of Machine Learning
-
Урок 89. 00:03:06Introduction to Linear Regression (LR)
-
Урок 90. 00:09:18How LR Works?
-
Урок 91. 00:09:30Some Fun With Maths Behind LR
-
Урок 92. 00:10:54R Square
-
Урок 93. 00:14:49LR Case Study Part1
-
Урок 94. 00:04:54LR Case Study Part2
-
Урок 95. 00:04:26LR Case Study Part3
-
Урок 96. 00:01:04Residual Square Error (RSE)
-
Урок 97. 00:03:16Introduction
-
Урок 98. 00:07:38Case Study part1
-
Урок 99. 00:10:38Case Study part2
-
Урок 100. 00:06:05Case Study part3
-
Урок 101. 00:00:46Adjusted R Square
-
Урок 102. 00:07:09Case Study Part1
-
Урок 103. 00:09:18Case Study Part2
-
Урок 104. 00:06:37Case Study Part3
-
Урок 105. 00:14:39Case Study Part4
-
Урок 106. 00:04:52Case Study Part5
-
Урок 107. 00:06:22Case Study Part6 (RFE)
-
Урок 108. 00:05:18Introduction to the Problem Statement
-
Урок 109. 00:09:30Playing With Data
-
Урок 110. 00:04:43Building Model Part1
-
Урок 111. 00:07:41Building Model Part2
-
Урок 112. 00:03:52Building Model Part3
-
Урок 113. 00:03:36Verification of Model
-
Урок 114. 00:15:58Pre-Req For Gradient Descent Part1
-
Урок 115. 00:09:00Pre-Req For Gradient Descent Part2
-
Урок 116. 00:02:22Cost Functions
-
Урок 117. 00:07:26Defining Cost Functions More Formally
-
Урок 118. 00:10:51Gradient Descent
-
Урок 119. 00:04:14Optimisation
-
Урок 120. 00:04:53Closed Form Vs Gradient Descent
-
Урок 121. 00:05:40Gradient Descent case study
-
Урок 122. 00:12:55Introduction to Classification
-
Урок 123. 00:07:31Defining Classification Mathematically
-
Урок 124. 00:11:34Introduction to KNN
-
Урок 125. 00:12:45Accuracy of KNN
-
Урок 126. 00:12:54Effectiveness of KNN
-
Урок 127. 00:12:21Distance Metrics
-
Урок 128. 00:08:31Distance Metrics Part2
-
Урок 129. 00:09:36Finding k
-
Урок 130. 00:02:53KNN on Regression
-
Урок 131. 00:07:56Case Study
-
Урок 132. 00:22:16Classification Case1
-
Урок 133. 00:15:03Classification Case2
-
Урок 134. 00:13:35Classification Case3
-
Урок 135. 00:12:38Classification Case4
-
Урок 136. 00:21:16Performance Metrics Part1
-
Урок 137. 00:15:17Performance Metrics Part2
-
Урок 138. 00:05:09Performance Metrics Part3
-
Урок 139. 00:11:37Model Creation Case1
-
Урок 140. 00:07:39Model Creation Case2
-
Урок 141. 00:11:36Gridsearch Case study Part1
-
Урок 142. 00:15:03Gridsearch Case study Part2
-
Урок 143. 00:14:58Introduction to Naive Bayes
-
Урок 144. 00:10:55Bayes Theorem
-
Урок 145. 00:08:45Practical Example from NB with One Column
-
Урок 146. 00:11:31Practical Example from NB with Multiple Columns
-
Урок 147. 00:08:43Naive Bayes On Text Data Part1
-
Урок 148. 00:05:11Naive Bayes On Text Data Part2
-
Урок 149. 00:04:11Laplace Smoothing
-
Урок 150. 00:01:38Bernoulli Naive Bayes
-
Урок 151. 00:08:41Case Study 1
-
Урок 152. 00:06:52Case Study 2 Part1
-
Урок 153. 00:02:10Case Study 2 Part2
-
Урок 154. 00:07:31Introduction
-
Урок 155. 00:10:19Sigmoid Function
-
Урок 156. 00:10:01Log Odds
-
Урок 157. 00:16:29Case Study
-
Урок 158. 00:15:06Introduction
-
Урок 159. 00:06:28Hyperplane Part1
-
Урок 160. 00:14:06Hyperplane Part2
-
Урок 161. 00:07:38Maths Behind SVM
-
Урок 162. 00:04:04Support Vectors
-
Урок 163. 00:09:59Slack Variable
-
Урок 164. 00:06:25SVM Case Study Part1
-
Урок 165. 00:06:49SVM Case Study Part2
-
Урок 166. 00:08:55Kernel Part1
-
Урок 167. 00:12:34Kernel Part2
-
Урок 168. 00:07:28Case Study : 2
-
Урок 169. 00:08:46Case Study : 3 Part1
-
Урок 170. 00:05:24Case Study : 3 Part2
-
Урок 171. 00:16:33Case Study 4
-
Урок 172. 00:07:21Introduction
-
Урок 173. 00:07:51Example of DT
-
Урок 174. 00:05:02Homogenity
-
Урок 175. 00:07:05Gini Index
-
Урок 176. 00:05:24Information Gain Part1
-
Урок 177. 00:05:14Information Gain Part2
-
Урок 178. 00:04:11Advantages and Disadvantages of DT
-
Урок 179. 00:09:59Preventing Overfitting Issues in DT
-
Урок 180. 00:10:36DT Case Study Part1
-
Урок 181. 00:09:06DT Case Study Part2
-
Урок 182. 00:10:15Introduction to Ensembles
-
Урок 183. 00:13:10Bagging
-
Урок 184. 00:04:39Advantages
-
Урок 185. 00:03:53Runtime
-
Урок 186. 00:05:41Case study
-
Урок 187. 00:06:06Introduction to Boosting
-
Урок 188. 00:02:54Weak Learners
-
Урок 189. 00:02:31Shallow Decision Tree
-
Урок 190. 00:07:49Adaboost Part1
-
Урок 191. 00:06:45Adaboost Part2
-
Урок 192. 00:04:47Adaboost Case Study
-
Урок 193. 00:04:28XGBoost
-
Урок 194. 00:03:10Boosting Part1
-
Урок 195. 00:06:49Boosting Part2
-
Урок 196. 00:08:36XGboost Algorithm
-
Урок 197. 00:09:40Case Study Part1
-
Урок 198. 00:10:45Case Study Part2
-
Урок 199. 00:05:34Case Study Part3
-
Урок 200. 00:21:29Model Selection Part1
-
Урок 201. 00:12:32Model Selection Part2
-
Урок 202. 00:09:42Model Selection Part3
-
Урок 203. 00:10:38Introduction to Clustering
-
Урок 204. 00:07:22Segmentation
-
Урок 205. 00:08:08Kmeans
-
Урок 206. 00:10:23Maths Behind Kmeans
-
Урок 207. 00:02:22More Maths
-
Урок 208. 00:10:11Kmeans plus
-
Урок 209. 00:06:44Value of K
-
Урок 210. 00:02:32Hopkins test
-
Урок 211. 00:10:56Case Study Part1
-
Урок 212. 00:06:48Case Study Part2
-
Урок 213. 00:04:13More on Segmentation
-
Урок 214. 00:07:34Hierarchial Clustering
-
Урок 215. 00:05:35Case Study
-
Урок 216. 00:30:26Introduction
-
Урок 217. 00:25:59PCA
-
Урок 218. 00:24:25Maths Behind PCA
-
Урок 219. 00:05:16Case Study Part1
-
Урок 220. 00:15:27Case Study Part2
-
Урок 221. 00:07:20Introduction
-
Урок 222. 00:05:24Example Part1
-
Урок 223. 00:09:07Example Part2
-
Урок 224. 00:15:23Optimal Solution
-
Урок 225. 00:03:25Case study
-
Урок 226. 00:09:01Regularization
-
Урок 227. 00:07:03Ridge and Lasso
-
Урок 228. 00:08:51Case Study
-
Урок 229. 00:05:32Model Selection
-
Урок 230. 00:03:20Adjusted R Square
-
Урок 231. 00:02:42Expectations
-
Урок 232. 00:09:13Introduction
-
Урок 233. 00:15:39History
-
Урок 234. 00:07:18Perceptron
-
Урок 235. 00:13:07Multi Layered Perceptron
-
Урок 236. 00:10:27Neural Network Playground
-
Урок 237. 00:08:41Introduction to the Problem Statement
-
Урок 238. 00:14:34Playing With The Data
-
Урок 239. 00:09:54Translating the Problem In Machine Learning World
-
Урок 240. 00:08:02Dealing with Text Data
-
Урок 241. 00:10:24Train, Test And Cross Validation Split
-
Урок 242. 00:16:56Understanding Evaluation Matrix: Log Loss
-
Урок 243. 00:08:43Building A Worst Model
-
Урок 244. 00:05:49Evaluating Worst ML Model
-
Урок 245. 00:12:14First Categorical column analysis
-
Урок 246. 00:05:07Response encoding and one hot encoder
-
Урок 247. 00:12:06Laplace Smoothing and Calibrated classifier
-
Урок 248. 00:06:54Significance of first categorical column
-
Урок 249. 00:04:08Second Categorical column
-
Урок 250. 00:06:53Third Categorical column
-
Урок 251. 00:04:24Data pre-processing before building machine learning model
-
Урок 252. 00:13:12Building Machine Learning model :part1
-
Урок 253. 00:11:39Building Machine Learning model :part2
-
Урок 254. 00:03:18Building Machine Learning model :part3
-
Урок 255. 00:03:14Building Machine Learning model :part4
-
Урок 256. 00:03:49Building Machine Learning model :part5
-
Урок 257. 00:06:33Building Machine Learning model :part6
- Категории
- Источники
- Все курсы
- Разделы
- Книги