-
Урок 1.
00:13:59
Introduction to the course
-
Урок 2.
00:09:02
Introduction to Kaggle
-
Урок 3.
00:09:02
Installation of Python and Anaconda
-
Урок 4.
00:03:34
Python Introduction
-
Урок 5.
00:15:05
Variables in Python
-
Урок 6.
00:05:28
Numeric Operations in Python
-
Урок 7.
00:02:25
Logical Operations
-
Урок 8.
00:08:16
If else Loop
-
Урок 9.
00:10:18
for while Loop
-
Урок 10.
00:11:19
Functions
-
Урок 11.
00:12:43
String Part1
-
Урок 12.
00:03:02
String Part2
-
Урок 13.
00:03:06
List Part1
-
Урок 14.
00:10:49
List Part2
-
Урок 15.
00:08:53
List Part3
-
Урок 16.
00:08:11
List Part4
-
Урок 17.
00:08:42
Tuples
-
Урок 18.
00:07:28
Sets
-
Урок 19.
00:07:36
Dictionaries
-
Урок 20.
00:07:09
Comprehentions
-
Урок 21.
00:06:20
Introduction
-
Урок 22.
00:19:21
Numpy Operations Part1
-
Урок 23.
00:24:27
Numpy Operations Part2
-
Урок 24.
00:06:30
Introduction
-
Урок 25.
00:07:59
Series
-
Урок 26.
00:07:54
DataFrame
-
Урок 27.
00:01:24
Operations Part1
-
Урок 28.
00:05:11
Operations Part2
-
Урок 29.
00:06:07
Indexes
-
Урок 30.
00:07:28
loc and iloc
-
Урок 31.
00:05:29
Reading CSV
-
Урок 32.
00:03:44
Merging Part1
-
Урок 33.
00:05:26
groupby
-
Урок 34.
00:04:26
Merging Part2
-
Урок 35.
00:03:25
Pivot Table
-
Урок 36.
00:43:18
Linear Algebra : Vectors
-
Урок 37.
00:15:44
Linear Algebra : Matrix Part1
-
Урок 38.
00:16:22
Linear Algebra : Matrix Part2
-
Урок 39.
00:08:45
Linear Algebra : Going From 2D to nD Part1
-
Урок 40.
00:06:54
Linear Algebra : 2D to nD Part2
-
Урок 41.
00:03:02
Inferential Statistics
-
Урок 42.
00:13:16
Probability Theory
-
Урок 43.
00:05:00
Probability Distribution
-
Урок 44.
00:04:53
Expected Values Part1
-
Урок 45.
00:03:15
Expected Values Part2
-
Урок 46.
00:06:02
Without Experiment
-
Урок 47.
00:04:12
Binomial Distribution
-
Урок 48.
00:02:25
Commulative Distribution
-
Урок 49.
00:04:44
PDF
-
Урок 50.
00:05:01
Normal Distribution
-
Урок 51.
00:04:45
z Score
-
Урок 52.
00:09:42
Sampling
-
Урок 53.
00:06:17
Sampling Distribution
-
Урок 54.
00:03:08
Central Limit Theorem
-
Урок 55.
00:07:15
Confidence Interval Part1
-
Урок 56.
00:03:19
Confidence Interval Part2
-
Урок 57.
00:08:30
Introduction
-
Урок 58.
00:06:29
NULL And Alternate Hypothesis
-
Урок 59.
00:05:47
Examples
-
Урок 60.
00:08:02
One/Two Tailed Tests
-
Урок 61.
00:04:19
Critical Value Method
-
Урок 62.
00:07:37
z Table
-
Урок 63.
00:03:18
Examples
-
Урок 64.
00:03:03
More Examples
-
Урок 65.
00:05:16
p Value
-
Урок 66.
00:02:54
Types of Error
-
Урок 67.
00:03:28
t- distribution Part1
-
Урок 68.
00:02:43
t- distribution Part2
-
Урок 69.
00:19:55
Matplotlib
-
Урок 70.
00:20:26
Seaborn
-
Урок 71.
00:10:24
Case Study
-
Урок 72.
00:04:27
Seaborn On Time Series Data
-
Урок 73.
00:01:07
Introduction
-
Урок 74.
00:05:07
Data Sourcing and Cleaning part1
-
Урок 75.
00:03:15
Data Sourcing and Cleaning part2
-
Урок 76.
00:04:00
Data Sourcing and Cleaning part3
-
Урок 77.
00:03:57
Data Sourcing and Cleaning part4
-
Урок 78.
00:03:31
Data Sourcing and Cleaning part5
-
Урок 79.
00:04:15
Data Sourcing and Cleaning part6
-
Урок 80.
00:14:42
Data Cleaning part1
-
Урок 81.
00:09:27
Data Cleaning part2
-
Урок 82.
00:22:23
Univariate Analysis Part1
-
Урок 83.
00:17:33
Univariate Analysis Part2
-
Урок 84.
00:06:47
Segmented Analysis
-
Урок 85.
00:13:00
Bivariate Analysis
-
Урок 86.
00:12:15
Derived Columns
-
Урок 87.
00:02:14
Introduction to Machine Learning
-
Урок 88.
00:08:57
Types of Machine Learning
-
Урок 89.
00:03:06
Introduction to Linear Regression (LR)
-
Урок 90.
00:09:18
How LR Works?
-
Урок 91.
00:09:30
Some Fun With Maths Behind LR
-
Урок 92.
00:10:54
R Square
-
Урок 93.
00:14:49
LR Case Study Part1
-
Урок 94.
00:04:54
LR Case Study Part2
-
Урок 95.
00:04:26
LR Case Study Part3
-
Урок 96.
00:01:04
Residual Square Error (RSE)
-
Урок 97.
00:03:16
Introduction
-
Урок 98.
00:07:38
Case Study part1
-
Урок 99.
00:10:38
Case Study part2
-
Урок 100.
00:06:05
Case Study part3
-
Урок 101.
00:00:46
Adjusted R Square
-
Урок 102.
00:07:09
Case Study Part1
-
Урок 103.
00:09:18
Case Study Part2
-
Урок 104.
00:06:37
Case Study Part3
-
Урок 105.
00:14:39
Case Study Part4
-
Урок 106.
00:04:52
Case Study Part5
-
Урок 107.
00:06:22
Case Study Part6 (RFE)
-
Урок 108.
00:05:18
Introduction to the Problem Statement
-
Урок 109.
00:09:30
Playing With Data
-
Урок 110.
00:04:43
Building Model Part1
-
Урок 111.
00:07:41
Building Model Part2
-
Урок 112.
00:03:52
Building Model Part3
-
Урок 113.
00:03:36
Verification of Model
-
Урок 114.
00:15:58
Pre-Req For Gradient Descent Part1
-
Урок 115.
00:09:00
Pre-Req For Gradient Descent Part2
-
Урок 116.
00:02:22
Cost Functions
-
Урок 117.
00:07:26
Defining Cost Functions More Formally
-
Урок 118.
00:10:51
Gradient Descent
-
Урок 119.
00:04:14
Optimisation
-
Урок 120.
00:04:53
Closed Form Vs Gradient Descent
-
Урок 121.
00:05:40
Gradient Descent case study
-
Урок 122.
00:12:55
Introduction to Classification
-
Урок 123.
00:07:31
Defining Classification Mathematically
-
Урок 124.
00:11:34
Introduction to KNN
-
Урок 125.
00:12:45
Accuracy of KNN
-
Урок 126.
00:12:54
Effectiveness of KNN
-
Урок 127.
00:12:21
Distance Metrics
-
Урок 128.
00:08:31
Distance Metrics Part2
-
Урок 129.
00:09:36
Finding k
-
Урок 130.
00:02:53
KNN on Regression
-
Урок 131.
00:07:56
Case Study
-
Урок 132.
00:22:16
Classification Case1
-
Урок 133.
00:15:03
Classification Case2
-
Урок 134.
00:13:35
Classification Case3
-
Урок 135.
00:12:38
Classification Case4
-
Урок 136.
00:21:16
Performance Metrics Part1
-
Урок 137.
00:15:17
Performance Metrics Part2
-
Урок 138.
00:05:09
Performance Metrics Part3
-
Урок 139.
00:11:37
Model Creation Case1
-
Урок 140.
00:07:39
Model Creation Case2
-
Урок 141.
00:11:36
Gridsearch Case study Part1
-
Урок 142.
00:15:03
Gridsearch Case study Part2
-
Урок 143.
00:14:58
Introduction to Naive Bayes
-
Урок 144.
00:10:55
Bayes Theorem
-
Урок 145.
00:08:45
Practical Example from NB with One Column
-
Урок 146.
00:11:31
Practical Example from NB with Multiple Columns
-
Урок 147.
00:08:43
Naive Bayes On Text Data Part1
-
Урок 148.
00:05:11
Naive Bayes On Text Data Part2
-
Урок 149.
00:04:11
Laplace Smoothing
-
Урок 150.
00:01:38
Bernoulli Naive Bayes
-
Урок 151.
00:08:41
Case Study 1
-
Урок 152.
00:06:52
Case Study 2 Part1
-
Урок 153.
00:02:10
Case Study 2 Part2
-
Урок 154.
00:07:31
Introduction
-
Урок 155.
00:10:19
Sigmoid Function
-
Урок 156.
00:10:01
Log Odds
-
Урок 157.
00:16:29
Case Study
-
Урок 158.
00:15:06
Introduction
-
Урок 159.
00:06:28
Hyperplane Part1
-
Урок 160.
00:14:06
Hyperplane Part2
-
Урок 161.
00:07:38
Maths Behind SVM
-
Урок 162.
00:04:04
Support Vectors
-
Урок 163.
00:09:59
Slack Variable
-
Урок 164.
00:06:25
SVM Case Study Part1
-
Урок 165.
00:06:49
SVM Case Study Part2
-
Урок 166.
00:08:55
Kernel Part1
-
Урок 167.
00:12:34
Kernel Part2
-
Урок 168.
00:07:28
Case Study : 2
-
Урок 169.
00:08:46
Case Study : 3 Part1
-
Урок 170.
00:05:24
Case Study : 3 Part2
-
Урок 171.
00:16:33
Case Study 4
-
Урок 172.
00:07:21
Introduction
-
Урок 173.
00:07:51
Example of DT
-
Урок 174.
00:05:02
Homogenity
-
Урок 175.
00:07:05
Gini Index
-
Урок 176.
00:05:24
Information Gain Part1
-
Урок 177.
00:05:14
Information Gain Part2
-
Урок 178.
00:04:11
Advantages and Disadvantages of DT
-
Урок 179.
00:09:59
Preventing Overfitting Issues in DT
-
Урок 180.
00:10:36
DT Case Study Part1
-
Урок 181.
00:09:06
DT Case Study Part2
-
Урок 182.
00:10:15
Introduction to Ensembles
-
Урок 183.
00:13:10
Bagging
-
Урок 184.
00:04:39
Advantages
-
Урок 185.
00:03:53
Runtime
-
Урок 186.
00:05:41
Case study
-
Урок 187.
00:06:06
Introduction to Boosting
-
Урок 188.
00:02:54
Weak Learners
-
Урок 189.
00:02:31
Shallow Decision Tree
-
Урок 190.
00:07:49
Adaboost Part1
-
Урок 191.
00:06:45
Adaboost Part2
-
Урок 192.
00:04:47
Adaboost Case Study
-
Урок 193.
00:04:28
XGBoost
-
Урок 194.
00:03:10
Boosting Part1
-
Урок 195.
00:06:49
Boosting Part2
-
Урок 196.
00:08:36
XGboost Algorithm
-
Урок 197.
00:09:40
Case Study Part1
-
Урок 198.
00:10:45
Case Study Part2
-
Урок 199.
00:05:34
Case Study Part3
-
Урок 200.
00:21:29
Model Selection Part1
-
Урок 201.
00:12:32
Model Selection Part2
-
Урок 202.
00:09:42
Model Selection Part3
-
Урок 203.
00:10:38
Introduction to Clustering
-
Урок 204.
00:07:22
Segmentation
-
Урок 205.
00:08:08
Kmeans
-
Урок 206.
00:10:23
Maths Behind Kmeans
-
Урок 207.
00:02:22
More Maths
-
Урок 208.
00:10:11
Kmeans plus
-
Урок 209.
00:06:44
Value of K
-
Урок 210.
00:02:32
Hopkins test
-
Урок 211.
00:10:56
Case Study Part1
-
Урок 212.
00:06:48
Case Study Part2
-
Урок 213.
00:04:13
More on Segmentation
-
Урок 214.
00:07:34
Hierarchial Clustering
-
Урок 215.
00:05:35
Case Study
-
Урок 216.
00:30:26
Introduction
-
Урок 217.
00:25:59
PCA
-
Урок 218.
00:24:25
Maths Behind PCA
-
Урок 219.
00:05:16
Case Study Part1
-
Урок 220.
00:15:27
Case Study Part2
-
Урок 221.
00:07:20
Introduction
-
Урок 222.
00:05:24
Example Part1
-
Урок 223.
00:09:07
Example Part2
-
Урок 224.
00:15:23
Optimal Solution
-
Урок 225.
00:03:25
Case study
-
Урок 226.
00:09:01
Regularization
-
Урок 227.
00:07:03
Ridge and Lasso
-
Урок 228.
00:08:51
Case Study
-
Урок 229.
00:05:32
Model Selection
-
Урок 230.
00:03:20
Adjusted R Square
-
Урок 231.
00:02:42
Expectations
-
Урок 232.
00:09:13
Introduction
-
Урок 233.
00:15:39
History
-
Урок 234.
00:07:18
Perceptron
-
Урок 235.
00:13:07
Multi Layered Perceptron
-
Урок 236.
00:10:27
Neural Network Playground
-
Урок 237.
00:08:41
Introduction to the Problem Statement
-
Урок 238.
00:14:34
Playing With The Data
-
Урок 239.
00:09:54
Translating the Problem In Machine Learning World
-
Урок 240.
00:08:02
Dealing with Text Data
-
Урок 241.
00:10:24
Train, Test And Cross Validation Split
-
Урок 242.
00:16:56
Understanding Evaluation Matrix: Log Loss
-
Урок 243.
00:08:43
Building A Worst Model
-
Урок 244.
00:05:49
Evaluating Worst ML Model
-
Урок 245.
00:12:14
First Categorical column analysis
-
Урок 246.
00:05:07
Response encoding and one hot encoder
-
Урок 247.
00:12:06
Laplace Smoothing and Calibrated classifier
-
Урок 248.
00:06:54
Significance of first categorical column
-
Урок 249.
00:04:08
Second Categorical column
-
Урок 250.
00:06:53
Third Categorical column
-
Урок 251.
00:04:24
Data pre-processing before building machine learning model
-
Урок 252.
00:13:12
Building Machine Learning model :part1
-
Урок 253.
00:11:39
Building Machine Learning model :part2
-
Урок 254.
00:03:18
Building Machine Learning model :part3
-
Урок 255.
00:03:14
Building Machine Learning model :part4
-
Урок 256.
00:03:49
Building Machine Learning model :part5
-
Урок 257.
00:06:33
Building Machine Learning model :part6