Урок 1.00:13:59
Introduction to the course
Урок 2.00:09:02
Introduction to Kaggle
Урок 3.00:09:02
Installation of Python and Anaconda
Урок 4.00:03:34
Python Introduction
Урок 5.00:15:05
Variables in Python
Урок 6.00:05:28
Numeric Operations in Python
Урок 7.00:02:25
Logical Operations
Урок 8.00:08:16
If else Loop
Урок 9.00:10:18
for while Loop
Урок 10.00:11:19
Functions
Урок 11.00:12:43
String Part1
Урок 12.00:03:02
String Part2
Урок 13.00:03:06
List Part1
Урок 14.00:10:49
List Part2
Урок 15.00:08:53
List Part3
Урок 16.00:08:11
List Part4
Урок 17.00:08:42
Tuples
Урок 18.00:07:28
Sets
Урок 19.00:07:36
Dictionaries
Урок 20.00:07:09
Comprehentions
Урок 21.00:06:20
Introduction
Урок 22.00:19:21
Numpy Operations Part1
Урок 23.00:24:27
Numpy Operations Part2
Урок 24.00:06:30
Introduction
Урок 25.00:07:59
Series
Урок 26.00:07:54
DataFrame
Урок 27.00:01:24
Operations Part1
Урок 28.00:05:11
Operations Part2
Урок 29.00:06:07
Indexes
Урок 30.00:07:28
loc and iloc
Урок 31.00:05:29
Reading CSV
Урок 32.00:03:44
Merging Part1
Урок 33.00:05:26
groupby
Урок 34.00:04:26
Merging Part2
Урок 35.00:03:25
Pivot Table
Урок 36.00:43:18
Linear Algebra : Vectors
Урок 37.00:15:44
Linear Algebra : Matrix Part1
Урок 38.00:16:22
Linear Algebra : Matrix Part2
Урок 39.00:08:45
Linear Algebra : Going From 2D to nD Part1
Урок 40.00:06:54
Linear Algebra : 2D to nD Part2
Урок 41.00:03:02
Inferential Statistics
Урок 42.00:13:16
Probability Theory
Урок 43.00:05:00
Probability Distribution
Урок 44.00:04:53
Expected Values Part1
Урок 45.00:03:15
Expected Values Part2
Урок 46.00:06:02
Without Experiment
Урок 47.00:04:12
Binomial Distribution
Урок 48.00:02:25
Commulative Distribution
Урок 49.00:04:44
PDF
Урок 50.00:05:01
Normal Distribution
Урок 51.00:04:45
z Score
Урок 52.00:09:42
Sampling
Урок 53.00:06:17
Sampling Distribution
Урок 54.00:03:08
Central Limit Theorem
Урок 55.00:07:15
Confidence Interval Part1
Урок 56.00:03:19
Confidence Interval Part2
Урок 57.00:08:30
Introduction
Урок 58.00:06:29
NULL And Alternate Hypothesis
Урок 59.00:05:47
Examples
Урок 60.00:08:02
One/Two Tailed Tests
Урок 61.00:04:19
Critical Value Method
Урок 62.00:07:37
z Table
Урок 63.00:03:18
Examples
Урок 64.00:03:03
More Examples
Урок 65.00:05:16
p Value
Урок 66.00:02:54
Types of Error
Урок 67.00:03:28
t- distribution Part1
Урок 68.00:02:43
t- distribution Part2
Урок 69.00:19:55
Matplotlib
Урок 70.00:20:26
Seaborn
Урок 71.00:10:24
Case Study
Урок 72.00:04:27
Seaborn On Time Series Data
Урок 73.00:01:07
Introduction
Урок 74.00:05:07
Data Sourcing and Cleaning part1
Урок 75.00:03:15
Data Sourcing and Cleaning part2
Урок 76.00:04:00
Data Sourcing and Cleaning part3
Урок 77.00:03:57
Data Sourcing and Cleaning part4
Урок 78.00:03:31
Data Sourcing and Cleaning part5
Урок 79.00:04:15
Data Sourcing and Cleaning part6
Урок 80.00:14:42
Data Cleaning part1
Урок 81.00:09:27
Data Cleaning part2
Урок 82.00:22:23
Univariate Analysis Part1
Урок 83.00:17:33
Univariate Analysis Part2
Урок 84.00:06:47
Segmented Analysis
Урок 85.00:13:00
Bivariate Analysis
Урок 86.00:12:15
Derived Columns
Урок 87.00:02:14
Introduction to Machine Learning
Урок 88.00:08:57
Types of Machine Learning
Урок 89.00:03:06
Introduction to Linear Regression (LR)
Урок 90.00:09:18
How LR Works?
Урок 91.00:09:30
Some Fun With Maths Behind LR
Урок 92.00:10:54
R Square
Урок 93.00:14:49
LR Case Study Part1
Урок 94.00:04:54
LR Case Study Part2
Урок 95.00:04:26
LR Case Study Part3
Урок 96.00:01:04
Residual Square Error (RSE)
Урок 97.00:03:16
Introduction
Урок 98.00:07:38
Case Study part1
Урок 99.00:10:38
Case Study part2
Урок 100.00:06:05
Case Study part3
Урок 101.00:00:46
Adjusted R Square
Урок 102.00:07:09
Case Study Part1
Урок 103.00:09:18
Case Study Part2
Урок 104.00:06:37
Case Study Part3
Урок 105.00:14:39
Case Study Part4
Урок 106.00:04:52
Case Study Part5
Урок 107.00:06:22
Case Study Part6 (RFE)
Урок 108.00:05:18
Introduction to the Problem Statement
Урок 109.00:09:30
Playing With Data
Урок 110.00:04:43
Building Model Part1
Урок 111.00:07:41
Building Model Part2
Урок 112.00:03:52
Building Model Part3
Урок 113.00:03:36
Verification of Model
Урок 114.00:15:58
Pre-Req For Gradient Descent Part1
Урок 115.00:09:00
Pre-Req For Gradient Descent Part2
Урок 116.00:02:22
Cost Functions
Урок 117.00:07:26
Defining Cost Functions More Formally
Урок 118.00:10:51
Gradient Descent
Урок 119.00:04:14
Optimisation
Урок 120.00:04:53
Closed Form Vs Gradient Descent
Урок 121.00:05:40
Gradient Descent case study
Урок 122.00:12:55
Introduction to Classification
Урок 123.00:07:31
Defining Classification Mathematically
Урок 124.00:11:34
Introduction to KNN
Урок 125.00:12:45
Accuracy of KNN
Урок 126.00:12:54
Effectiveness of KNN
Урок 127.00:12:21
Distance Metrics
Урок 128.00:08:31
Distance Metrics Part2
Урок 129.00:09:36
Finding k
Урок 130.00:02:53
KNN on Regression
Урок 131.00:07:56
Case Study
Урок 132.00:22:16
Classification Case1
Урок 133.00:15:03
Classification Case2
Урок 134.00:13:35
Classification Case3
Урок 135.00:12:38
Classification Case4
Урок 136.00:21:16
Performance Metrics Part1
Урок 137.00:15:17
Performance Metrics Part2
Урок 138.00:05:09
Performance Metrics Part3
Урок 139.00:11:37
Model Creation Case1
Урок 140.00:07:39
Model Creation Case2
Урок 141.00:11:36
Gridsearch Case study Part1
Урок 142.00:15:03
Gridsearch Case study Part2
Урок 143.00:14:58
Introduction to Naive Bayes
Урок 144.00:10:55
Bayes Theorem
Урок 145.00:08:45
Practical Example from NB with One Column
Урок 146.00:11:31
Practical Example from NB with Multiple Columns
Урок 147.00:08:43
Naive Bayes On Text Data Part1
Урок 148.00:05:11
Naive Bayes On Text Data Part2
Урок 149.00:04:11
Laplace Smoothing
Урок 150.00:01:38
Bernoulli Naive Bayes
Урок 151.00:08:41
Case Study 1
Урок 152.00:06:52
Case Study 2 Part1
Урок 153.00:02:10
Case Study 2 Part2
Урок 154.00:07:31
Introduction
Урок 155.00:10:19
Sigmoid Function
Урок 156.00:10:01
Log Odds
Урок 157.00:16:29
Case Study
Урок 158.00:15:06
Introduction
Урок 159.00:06:28
Hyperplane Part1
Урок 160.00:14:06
Hyperplane Part2
Урок 161.00:07:38
Maths Behind SVM
Урок 162.00:04:04
Support Vectors
Урок 163.00:09:59
Slack Variable
Урок 164.00:06:25
SVM Case Study Part1
Урок 165.00:06:49
SVM Case Study Part2
Урок 166.00:08:55
Kernel Part1
Урок 167.00:12:34
Kernel Part2
Урок 168.00:07:28
Case Study : 2
Урок 169.00:08:46
Case Study : 3 Part1
Урок 170.00:05:24
Case Study : 3 Part2
Урок 171.00:16:33
Case Study 4
Урок 172.00:07:21
Introduction
Урок 173.00:07:51
Example of DT
Урок 174.00:05:02
Homogenity
Урок 175.00:07:05
Gini Index
Урок 176.00:05:24
Information Gain Part1
Урок 177.00:05:14
Information Gain Part2
Урок 178.00:04:11
Advantages and Disadvantages of DT
Урок 179.00:09:59
Preventing Overfitting Issues in DT
Урок 180.00:10:36
DT Case Study Part1
Урок 181.00:09:06
DT Case Study Part2
Урок 182.00:10:15
Introduction to Ensembles
Урок 183.00:13:10
Bagging
Урок 184.00:04:39
Advantages
Урок 185.00:03:53
Runtime
Урок 186.00:05:41
Case study
Урок 187.00:06:06
Introduction to Boosting
Урок 188.00:02:54
Weak Learners
Урок 189.00:02:31
Shallow Decision Tree
Урок 190.00:07:49
Adaboost Part1
Урок 191.00:06:45
Adaboost Part2
Урок 192.00:04:47
Adaboost Case Study
Урок 193.00:04:28
XGBoost
Урок 194.00:03:10
Boosting Part1
Урок 195.00:06:49
Boosting Part2
Урок 196.00:08:36
XGboost Algorithm
Урок 197.00:09:40
Case Study Part1
Урок 198.00:10:45
Case Study Part2
Урок 199.00:05:34
Case Study Part3
Урок 200.00:21:29
Model Selection Part1
Урок 201.00:12:32
Model Selection Part2
Урок 202.00:09:42
Model Selection Part3
Урок 203.00:10:38
Introduction to Clustering
Урок 204.00:07:22
Segmentation
Урок 205.00:08:08
Kmeans
Урок 206.00:10:23
Maths Behind Kmeans
Урок 207.00:02:22
More Maths
Урок 208.00:10:11
Kmeans plus
Урок 209.00:06:44
Value of K
Урок 210.00:02:32
Hopkins test
Урок 211.00:10:56
Case Study Part1
Урок 212.00:06:48
Case Study Part2
Урок 213.00:04:13
More on Segmentation
Урок 214.00:07:34
Hierarchial Clustering
Урок 215.00:05:35
Case Study
Урок 216.00:30:26
Introduction
Урок 217.00:25:59
PCA
Урок 218.00:24:25
Maths Behind PCA
Урок 219.00:05:16
Case Study Part1
Урок 220.00:15:27
Case Study Part2
Урок 221.00:07:20
Introduction
Урок 222.00:05:24
Example Part1
Урок 223.00:09:07
Example Part2
Урок 224.00:15:23
Optimal Solution
Урок 225.00:03:25
Case study
Урок 226.00:09:01
Regularization
Урок 227.00:07:03
Ridge and Lasso
Урок 228.00:08:51
Case Study
Урок 229.00:05:32
Model Selection
Урок 230.00:03:20
Adjusted R Square
Урок 231.00:02:42
Expectations
Урок 232.00:09:13
Introduction
Урок 233.00:15:39
History
Урок 234.00:07:18
Perceptron
Урок 235.00:13:07
Multi Layered Perceptron
Урок 236.00:10:27
Neural Network Playground
Урок 237.00:08:41
Introduction to the Problem Statement
Урок 238.00:14:34
Playing With The Data
Урок 239.00:09:54
Translating the Problem In Machine Learning World
Урок 240.00:08:02
Dealing with Text Data
Урок 241.00:10:24
Train, Test And Cross Validation Split
Урок 242.00:16:56
Understanding Evaluation Matrix: Log Loss
Урок 243.00:08:43
Building A Worst Model
Урок 244.00:05:49
Evaluating Worst ML Model
Урок 245.00:12:14
First Categorical column analysis
Урок 246.00:05:07
Response encoding and one hot encoder
Урок 247.00:12:06
Laplace Smoothing and Calibrated classifier
Урок 248.00:06:54
Significance of first categorical column
Урок 249.00:04:08
Second Categorical column
Урок 250.00:06:53
Third Categorical column
Урок 251.00:04:24
Data pre-processing before building machine learning model
Урок 252.00:13:12
Building Machine Learning model :part1
Урок 253.00:11:39
Building Machine Learning model :part2
Урок 254.00:03:18
Building Machine Learning model :part3
Урок 255.00:03:14
Building Machine Learning model :part4
Урок 256.00:03:49
Building Machine Learning model :part5
Урок 257.00:06:33
Building Machine Learning model :part6