1. Урок 1. 00:02:58
    Updates on Udemy Reviews
  2. Урок 2. 00:12:35
    What is Deep Learning?
  3. Урок 3. 00:07:28
    Installing Python
  4. Урок 4. 00:01:33
    How to get the dataset
  5. Урок 5. 00:02:53
    Plan of Attack
  6. Урок 6. 00:16:16
    The Neuron
  7. Урок 7. 00:08:30
    The Activation Function
  8. Урок 8. 00:12:49
    How do Neural Networks work?
  9. Урок 9. 00:13:00
    How do Neural Networks learn?
  10. Урок 10. 00:10:14
    Gradient Descent
  11. Урок 11. 00:08:45
    Stochastic Gradient Descent
  12. Урок 12. 00:05:23
    Backpropagation
  13. Урок 13. 00:01:33
    How to get the dataset
  14. Урок 14. 00:05:00
    Business Problem Description
  15. Урок 15. 00:12:41
    Building an ANN - Step 1
  16. Урок 16. 00:17:17
    Building an ANN - Step 2
  17. Урок 17. 00:03:15
    Building an ANN - Step 3
  18. Урок 18. 00:02:22
    Building an ANN - Step 4
  19. Урок 19. 00:12:21
    Building an ANN - Step 5
  20. Урок 20. 00:02:44
    Building an ANN - Step 6
  21. Урок 21. 00:03:33
    Building an ANN - Step 7
  22. Урок 22. 00:06:56
    Building an ANN - Step 8
  23. Урок 23. 00:06:22
    Building an ANN - Step 9
  24. Урок 24. 00:06:54
    Building an ANN - Step 10
  25. Урок 25. 00:13:04
    Homework Solution
  26. Урок 26. 00:19:36
    Evaluating the ANN
  27. Урок 27. 00:07:25
    Improving the ANN
  28. Урок 28. 00:19:41
    Tuning the ANN
  29. Урок 29. 00:03:32
    Plan of attack
  30. Урок 30. 00:15:50
    What are convolutional neural networks?
  31. Урок 31. 00:16:39
    Step 1 - Convolution Operation
  32. Урок 32. 00:06:42
    Step 1(b) - ReLU Layer
  33. Урок 33. 00:14:14
    Step 2 - Pooling
  34. Урок 34. 00:01:53
    Step 3 - Flattening
  35. Урок 35. 00:19:26
    Step 4 - Full Connection
  36. Урок 36. 00:04:20
    Summary
  37. Урок 37. 00:18:21
    Softmax & Cross-Entropy
  38. Урок 38. 00:01:33
    How to get the dataset
  39. Урок 39. 00:04:09
    Introduction to CNNs
  40. Урок 40. 00:09:31
    Building a CNN - Step 1
  41. Урок 41. 00:03:01
    Building a CNN - Step 2
  42. Урок 42. 00:01:06
    Building a CNN - Step 3
  43. Урок 43. 00:12:52
    Building a CNN - Step 4
  44. Урок 44. 00:04:59
    Building a CNN - Step 5
  45. Урок 45. 00:05:00
    Building a CNN - Step 6
  46. Урок 46. 00:05:50
    Building a CNN - Step 7
  47. Урок 47. 00:02:50
    Building a CNN - Step 8
  48. Урок 48. 00:19:46
    Building a CNN - Step 9
  49. Урок 49. 00:08:26
    Building a CNN - Step 10
  50. Урок 50. 00:16:05
    Homework Solution
  51. Урок 51. 00:02:33
    Plan of attack
  52. Урок 52. 00:16:03
    The idea behind Recurrent Neural Networks
  53. Урок 53. 00:14:28
    The Vanishing Gradient Problem
  54. Урок 54. 00:19:48
    LSTMs
  55. Урок 55. 00:15:12
    Practical intuition
  56. Урок 56. 00:03:38
    EXTRA: LSTM Variations
  57. Урок 57. 00:01:33
    How to get the dataset
  58. Урок 58. 00:06:30
    Building a RNN - Step 1
  59. Урок 59. 00:07:05
    Building a RNN - Step 2
  60. Урок 60. 00:05:58
    Building a RNN - Step 3
  61. Урок 61. 00:14:24
    Building a RNN - Step 4
  62. Урок 62. 00:10:41
    Building a RNN - Step 5
  63. Урок 63. 00:02:51
    Building a RNN - Step 6
  64. Урок 64. 00:08:43
    Building a RNN - Step 7
  65. Урок 65. 00:05:21
    Building a RNN - Step 8
  66. Урок 66. 00:03:21
    Building a RNN - Step 9
  67. Урок 67. 00:04:22
    Building a RNN - Step 10
  68. Урок 68. 00:10:32
    Building a RNN - Step 11
  69. Урок 69. 00:05:23
    Building a RNN - Step 12
  70. Урок 70. 00:16:51
    Building a RNN - Step 13
  71. Урок 71. 00:08:16
    Building a RNN - Step 14
  72. Урок 72. 00:09:37
    Building a RNN - Step 15
  73. Урок 73. 00:03:11
    Plan of attack
  74. Урок 74. 00:08:31
    How do Self-Organizing Maps Work?
  75. Урок 75. 00:02:20
    Why revisit K-Means?
  76. Урок 76. 00:14:18
    K-Means Clustering (Refresher)
  77. Урок 77. 00:14:25
    How do Self-Organizing Maps Learn? (Part 1)
  78. Урок 78. 00:09:38
    How do Self-Organizing Maps Learn? (Part 2)
  79. Урок 79. 00:04:29
    Live SOM example
  80. Урок 80. 00:14:27
    Reading an Advanced SOM
  81. Урок 81. 00:07:49
    EXTRA: K-means Clustering (part 2)
  82. Урок 82. 00:11:52
    EXTRA: K-means Clustering (part 3)
  83. Урок 83. 00:01:33
    How to get the dataset
  84. Урок 84. 00:13:43
    Building a SOM - Step 1
  85. Урок 85. 00:09:40
    Building a SOM - Step 2
  86. Урок 86. 00:17:26
    Building a SOM - Step 3
  87. Урок 87. 00:11:13
    Building a SOM - Step 4
  88. Урок 88. 00:02:50
    Mega Case Study - Step 1
  89. Урок 89. 00:04:17
    Mega Case Study - Step 2
  90. Урок 90. 00:14:38
    Mega Case Study - Step 3
  91. Урок 91. 00:09:03
    Mega Case Study - Step 4
  92. Урок 92. 00:02:25
    Plan of attack
  93. Урок 93. 00:14:23
    Boltzmann Machine
  94. Урок 94. 00:10:40
    Energy-Based Models (EBM)
  95. Урок 95. 00:03:29
    Editing Wikipedia - Our Contribution to the World
  96. Урок 96. 00:17:30
    Restricted Boltzmann Machine
  97. Урок 97. 00:16:29
    Contrastive Divergence
  98. Урок 98. 00:05:24
    Deep Belief Networks
  99. Урок 99. 00:02:58
    Deep Boltzmann Machines
  100. Урок 100. 00:01:33
    How to get the dataset
  101. Урок 101. 00:09:10
    Building a Boltzmann Machine - Introduction
  102. Урок 102. 00:09:14
    Building a Boltzmann Machine - Step 1
  103. Урок 103. 00:09:41
    Building a Boltzmann Machine - Step 2
  104. Урок 104. 00:08:22
    Building a Boltzmann Machine - Step 3
  105. Урок 105. 00:20:54
    Building a Boltzmann Machine - Step 4
  106. Урок 106. 00:05:06
    Building a Boltzmann Machine - Step 5
  107. Урок 107. 00:07:34
    Building a Boltzmann Machine - Step 6
  108. Урок 108. 00:10:14
    Building a Boltzmann Machine - Step 7
  109. Урок 109. 00:12:37
    Building a Boltzmann Machine - Step 8
  110. Урок 110. 00:06:18
    Building a Boltzmann Machine - Step 9
  111. Урок 111. 00:11:35
    Building a Boltzmann Machine - Step 10
  112. Урок 112. 00:06:58
    Building a Boltzmann Machine - Step 11
  113. Урок 113. 00:13:24
    Building a Boltzmann Machine - Step 12
  114. Урок 114. 00:18:43
    Building a Boltzmann Machine - Step 13
  115. Урок 115. 00:17:11
    Building a Boltzmann Machine - Step 14
  116. Урок 116. 00:02:13
    Plan of attack
  117. Урок 117. 00:10:51
    Auto Encoders
  118. Урок 118. 00:01:16
    A Note on Biases
  119. Урок 119. 00:06:11
    Training an Auto Encoder
  120. Урок 120. 00:03:53
    Overcomplete hidden layers
  121. Урок 121. 00:06:16
    Sparse Autoencoders
  122. Урок 122. 00:02:33
    Denoising Autoencoders
  123. Урок 123. 00:02:24
    Contractive Autoencoders
  124. Урок 124. 00:01:55
    Stacked Autoencoders
  125. Урок 125. 00:01:51
    Deep Autoencoders
  126. Урок 126. 00:01:33
    How to get the dataset
  127. Урок 127. 00:12:05
    Building an AutoEncoder - Step 1
  128. Урок 128. 00:11:50
    Building an AutoEncoder - Step 2
  129. Урок 129. 00:08:22
    Building an AutoEncoder - Step 3
  130. Урок 130. 00:20:52
    Building an AutoEncoder - Step 4
  131. Урок 131. 00:05:05
    Building an AutoEncoder - Step 5
  132. Урок 132. 00:16:46
    Building an AutoEncoder - Step 6
  133. Урок 133. 00:13:38
    Building an AutoEncoder - Step 7
  134. Урок 134. 00:15:06
    Building an AutoEncoder - Step 8
  135. Урок 135. 00:13:33
    Building an AutoEncoder - Step 9
  136. Урок 136. 00:04:23
    Building an AutoEncoder - Step 10
  137. Урок 137. 00:11:27
    Building an AutoEncoder - Step 11
  138. Урок 138. 00:02:41
    THANK YOU bonus video
  139. Урок 139. 00:05:46
    Simple Linear Regression Intuition - Step 1
  140. Урок 140. 00:03:10
    Simple Linear Regression Intuition - Step 2
  141. Урок 141. 00:01:04
    Multiple Linear Regression Intuition
  142. Урок 142. 00:17:08
    Logistic Regression Intuition
  143. Урок 143. 00:07:26
    Data Preprocessing - Step 1
  144. Урок 144. 00:07:55
    Data Preprocessing - Step 2
  145. Урок 145. 00:10:40
    Data Preprocessing - Step 3
  146. Урок 146. 00:12:58
    Data Preprocessing - Step 4
  147. Урок 147. 00:10:41
    Data Preprocessing - Step 5
  148. Урок 148. 00:10:50
    Data Preprocessing - Step 6
  149. Урок 149. 00:03:42
    Data Preprocessing Template
  150. Урок 150. 00:05:22
    Logistic Regression Implementation - Step 1
  151. Урок 151. 00:03:22
    Logistic Regression Implementation - Step 2
  152. Урок 152. 00:02:35
    Logistic Regression Implementation - Step 3
  153. Урок 153. 00:04:14
    Logistic Regression Implementation - Step 4
  154. Урок 154. 00:19:35
    Logistic Regression Implementation - Step 5
  155. Урок 155. 00:03:40
    Classification Template