1. Урок 1.00:02:58
    Updates on Udemy Reviews
  2. Урок 2.00:12:35
    What is Deep Learning?
  3. Урок 3.00:07:28
    Installing Python
  4. Урок 4.00:01:33
    How to get the dataset
  5. Урок 5.00:02:53
    Plan of Attack
  6. Урок 6.00:16:16
    The Neuron
  7. Урок 7.00:08:30
    The Activation Function
  8. Урок 8.00:12:49
    How do Neural Networks work?
  9. Урок 9.00:13:00
    How do Neural Networks learn?
  10. Урок 10.00:10:14
    Gradient Descent
  11. Урок 11.00:08:45
    Stochastic Gradient Descent
  12. Урок 12.00:05:23
    Backpropagation
  13. Урок 13.00:01:33
    How to get the dataset
  14. Урок 14.00:05:00
    Business Problem Description
  15. Урок 15.00:12:41
    Building an ANN - Step 1
  16. Урок 16.00:17:17
    Building an ANN - Step 2
  17. Урок 17.00:03:15
    Building an ANN - Step 3
  18. Урок 18.00:02:22
    Building an ANN - Step 4
  19. Урок 19.00:12:21
    Building an ANN - Step 5
  20. Урок 20.00:02:44
    Building an ANN - Step 6
  21. Урок 21.00:03:33
    Building an ANN - Step 7
  22. Урок 22.00:06:56
    Building an ANN - Step 8
  23. Урок 23.00:06:22
    Building an ANN - Step 9
  24. Урок 24.00:06:54
    Building an ANN - Step 10
  25. Урок 25.00:13:04
    Homework Solution
  26. Урок 26.00:19:36
    Evaluating the ANN
  27. Урок 27.00:07:25
    Improving the ANN
  28. Урок 28.00:19:41
    Tuning the ANN
  29. Урок 29.00:03:32
    Plan of attack
  30. Урок 30.00:15:50
    What are convolutional neural networks?
  31. Урок 31.00:16:39
    Step 1 - Convolution Operation
  32. Урок 32.00:06:42
    Step 1(b) - ReLU Layer
  33. Урок 33.00:14:14
    Step 2 - Pooling
  34. Урок 34.00:01:53
    Step 3 - Flattening
  35. Урок 35.00:19:26
    Step 4 - Full Connection
  36. Урок 36.00:04:20
    Summary
  37. Урок 37.00:18:21
    Softmax & Cross-Entropy
  38. Урок 38.00:01:33
    How to get the dataset
  39. Урок 39.00:04:09
    Introduction to CNNs
  40. Урок 40.00:09:31
    Building a CNN - Step 1
  41. Урок 41.00:03:01
    Building a CNN - Step 2
  42. Урок 42.00:01:06
    Building a CNN - Step 3
  43. Урок 43.00:12:52
    Building a CNN - Step 4
  44. Урок 44.00:04:59
    Building a CNN - Step 5
  45. Урок 45.00:05:00
    Building a CNN - Step 6
  46. Урок 46.00:05:50
    Building a CNN - Step 7
  47. Урок 47.00:02:50
    Building a CNN - Step 8
  48. Урок 48.00:19:46
    Building a CNN - Step 9
  49. Урок 49.00:08:26
    Building a CNN - Step 10
  50. Урок 50.00:16:05
    Homework Solution
  51. Урок 51.00:02:33
    Plan of attack
  52. Урок 52.00:16:03
    The idea behind Recurrent Neural Networks
  53. Урок 53.00:14:28
    The Vanishing Gradient Problem
  54. Урок 54.00:19:48
    LSTMs
  55. Урок 55.00:15:12
    Practical intuition
  56. Урок 56.00:03:38
    EXTRA: LSTM Variations
  57. Урок 57.00:01:33
    How to get the dataset
  58. Урок 58.00:06:30
    Building a RNN - Step 1
  59. Урок 59.00:07:05
    Building a RNN - Step 2
  60. Урок 60.00:05:58
    Building a RNN - Step 3
  61. Урок 61.00:14:24
    Building a RNN - Step 4
  62. Урок 62.00:10:41
    Building a RNN - Step 5
  63. Урок 63.00:02:51
    Building a RNN - Step 6
  64. Урок 64.00:08:43
    Building a RNN - Step 7
  65. Урок 65.00:05:21
    Building a RNN - Step 8
  66. Урок 66.00:03:21
    Building a RNN - Step 9
  67. Урок 67.00:04:22
    Building a RNN - Step 10
  68. Урок 68.00:10:32
    Building a RNN - Step 11
  69. Урок 69.00:05:23
    Building a RNN - Step 12
  70. Урок 70.00:16:51
    Building a RNN - Step 13
  71. Урок 71.00:08:16
    Building a RNN - Step 14
  72. Урок 72.00:09:37
    Building a RNN - Step 15
  73. Урок 73.00:03:11
    Plan of attack
  74. Урок 74.00:08:31
    How do Self-Organizing Maps Work?
  75. Урок 75.00:02:20
    Why revisit K-Means?
  76. Урок 76.00:14:18
    K-Means Clustering (Refresher)
  77. Урок 77.00:14:25
    How do Self-Organizing Maps Learn? (Part 1)
  78. Урок 78.00:09:38
    How do Self-Organizing Maps Learn? (Part 2)
  79. Урок 79.00:04:29
    Live SOM example
  80. Урок 80.00:14:27
    Reading an Advanced SOM
  81. Урок 81.00:07:49
    EXTRA: K-means Clustering (part 2)
  82. Урок 82.00:11:52
    EXTRA: K-means Clustering (part 3)
  83. Урок 83.00:01:33
    How to get the dataset
  84. Урок 84.00:13:43
    Building a SOM - Step 1
  85. Урок 85.00:09:40
    Building a SOM - Step 2
  86. Урок 86.00:17:26
    Building a SOM - Step 3
  87. Урок 87.00:11:13
    Building a SOM - Step 4
  88. Урок 88.00:02:50
    Mega Case Study - Step 1
  89. Урок 89.00:04:17
    Mega Case Study - Step 2
  90. Урок 90.00:14:38
    Mega Case Study - Step 3
  91. Урок 91.00:09:03
    Mega Case Study - Step 4
  92. Урок 92.00:02:25
    Plan of attack
  93. Урок 93.00:14:23
    Boltzmann Machine
  94. Урок 94.00:10:40
    Energy-Based Models (EBM)
  95. Урок 95.00:03:29
    Editing Wikipedia - Our Contribution to the World
  96. Урок 96.00:17:30
    Restricted Boltzmann Machine
  97. Урок 97.00:16:29
    Contrastive Divergence
  98. Урок 98.00:05:24
    Deep Belief Networks
  99. Урок 99.00:02:58
    Deep Boltzmann Machines
  100. Урок 100.00:01:33
    How to get the dataset
  101. Урок 101.00:09:10
    Building a Boltzmann Machine - Introduction
  102. Урок 102.00:09:14
    Building a Boltzmann Machine - Step 1
  103. Урок 103.00:09:41
    Building a Boltzmann Machine - Step 2
  104. Урок 104.00:08:22
    Building a Boltzmann Machine - Step 3
  105. Урок 105.00:20:54
    Building a Boltzmann Machine - Step 4
  106. Урок 106.00:05:06
    Building a Boltzmann Machine - Step 5
  107. Урок 107.00:07:34
    Building a Boltzmann Machine - Step 6
  108. Урок 108.00:10:14
    Building a Boltzmann Machine - Step 7
  109. Урок 109.00:12:37
    Building a Boltzmann Machine - Step 8
  110. Урок 110.00:06:18
    Building a Boltzmann Machine - Step 9
  111. Урок 111.00:11:35
    Building a Boltzmann Machine - Step 10
  112. Урок 112.00:06:58
    Building a Boltzmann Machine - Step 11
  113. Урок 113.00:13:24
    Building a Boltzmann Machine - Step 12
  114. Урок 114.00:18:43
    Building a Boltzmann Machine - Step 13
  115. Урок 115.00:17:11
    Building a Boltzmann Machine - Step 14
  116. Урок 116.00:02:13
    Plan of attack
  117. Урок 117.00:10:51
    Auto Encoders
  118. Урок 118.00:01:16
    A Note on Biases
  119. Урок 119.00:06:11
    Training an Auto Encoder
  120. Урок 120.00:03:53
    Overcomplete hidden layers
  121. Урок 121.00:06:16
    Sparse Autoencoders
  122. Урок 122.00:02:33
    Denoising Autoencoders
  123. Урок 123.00:02:24
    Contractive Autoencoders
  124. Урок 124.00:01:55
    Stacked Autoencoders
  125. Урок 125.00:01:51
    Deep Autoencoders
  126. Урок 126.00:01:33
    How to get the dataset
  127. Урок 127.00:12:05
    Building an AutoEncoder - Step 1
  128. Урок 128.00:11:50
    Building an AutoEncoder - Step 2
  129. Урок 129.00:08:22
    Building an AutoEncoder - Step 3
  130. Урок 130.00:20:52
    Building an AutoEncoder - Step 4
  131. Урок 131.00:05:05
    Building an AutoEncoder - Step 5
  132. Урок 132.00:16:46
    Building an AutoEncoder - Step 6
  133. Урок 133.00:13:38
    Building an AutoEncoder - Step 7
  134. Урок 134.00:15:06
    Building an AutoEncoder - Step 8
  135. Урок 135.00:13:33
    Building an AutoEncoder - Step 9
  136. Урок 136.00:04:23
    Building an AutoEncoder - Step 10
  137. Урок 137.00:11:27
    Building an AutoEncoder - Step 11
  138. Урок 138.00:02:41
    THANK YOU bonus video
  139. Урок 139.00:05:46
    Simple Linear Regression Intuition - Step 1
  140. Урок 140.00:03:10
    Simple Linear Regression Intuition - Step 2
  141. Урок 141.00:01:04
    Multiple Linear Regression Intuition
  142. Урок 142.00:17:08
    Logistic Regression Intuition
  143. Урок 143.00:07:26
    Data Preprocessing - Step 1
  144. Урок 144.00:07:55
    Data Preprocessing - Step 2
  145. Урок 145.00:10:40
    Data Preprocessing - Step 3
  146. Урок 146.00:12:58
    Data Preprocessing - Step 4
  147. Урок 147.00:10:41
    Data Preprocessing - Step 5
  148. Урок 148.00:10:50
    Data Preprocessing - Step 6
  149. Урок 149.00:03:42
    Data Preprocessing Template
  150. Урок 150.00:05:22
    Logistic Regression Implementation - Step 1
  151. Урок 151.00:03:22
    Logistic Regression Implementation - Step 2
  152. Урок 152.00:02:35
    Logistic Regression Implementation - Step 3
  153. Урок 153.00:04:14
    Logistic Regression Implementation - Step 4
  154. Урок 154.00:19:35
    Logistic Regression Implementation - Step 5
  155. Урок 155.00:03:40
    Classification Template