-
Урок 1. 00:02:36Introduction
-
Урок 2. 00:06:50Outline and Perspective
-
Урок 3. 00:08:27Where to get the code
-
Урок 4. 00:11:56Anyone Can Succeed in this Course
-
Урок 5. 00:14:27What is Machine Learning?
-
Урок 6. 00:16:00Code Preparation (Classification Theory)
-
Урок 7. 00:04:39Beginner's Code Preamble
-
Урок 8. 00:08:41Classification Notebook
-
Урок 9. 00:07:19Code Preparation (Regression Theory)
-
Урок 10. 00:10:35Regression Notebook
-
Урок 11. 00:09:59The Neuron
-
Урок 12. 00:10:54How does a model "learn"?
-
Урок 13. 00:06:46Making Predictions
-
Урок 14. 00:04:28Saving and Loading a Model
-
Урок 15. 00:03:04Suggestion Box
-
Урок 16. 00:06:01Artificial Neural Networks Section Introduction
-
Урок 17. 00:09:41Forward Propagation
-
Урок 18. 00:09:44The Geometrical Picture
-
Урок 19. 00:17:19Activation Functions
-
Урок 20. 00:08:42Multiclass Classification
-
Урок 21. 00:12:37How to Represent Images
-
Урок 22. 00:12:43Code Preparation (ANN)
-
Урок 23. 00:08:37ANN for Image Classification
-
Урок 24. 00:11:06ANN for Regression
-
Урок 25. 00:16:39What is Convolution? (part 1)
-
Урок 26. 00:05:57What is Convolution? (part 2)
-
Урок 27. 00:06:42What is Convolution? (part 3)
-
Урок 28. 00:15:59Convolution on Color Images
-
Урок 29. 00:20:59CNN Architecture
-
Урок 30. 00:15:14CNN Code Preparation
-
Урок 31. 00:06:47CNN for Fashion MNIST
-
Урок 32. 00:04:29CNN for CIFAR-10
-
Урок 33. 00:08:52Data Augmentation
-
Урок 34. 00:05:15Batch Normalization
-
Урок 35. 00:10:23Improving CIFAR-10 Results
-
Урок 36. 00:03:05VGG Section Intro
-
Урок 37. 00:07:01What's so special about VGG?
-
Урок 38. 00:08:23Transfer Learning
-
Урок 39. 00:02:20Relationship to Greedy Layer-Wise Pretraining
-
Урок 40. 00:02:18Getting the data
-
Урок 41. 00:09:24Code pt 1
-
Урок 42. 00:03:42Code pt 2
-
Урок 43. 00:03:28Code pt 3
-
Урок 44. 00:01:49VGG Section Summary
-
Урок 45. 00:02:50ResNet Section Intro
-
Урок 46. 00:12:46ResNet Architecture
-
Урок 47. 00:02:26Building ResNet - Strategy
-
Урок 48. 00:05:17Uh-oh! What Happens if the Implementation Changes?
-
Урок 49. 00:03:35Building ResNet - Conv Block Details
-
Урок 50. 00:06:09Building ResNet - Conv Block Code
-
Урок 51. 00:01:24Building ResNet - Identity Block Details
-
Урок 52. 00:02:29Building ResNet - First Few Layers
-
Урок 53. 00:04:16Building ResNet - First Few Layers (Code)
-
Урок 54. 00:04:20Building ResNet - Putting it all together
-
Урок 55. 00:01:17Exercise: Apply ResNet
-
Урок 56. 00:02:40Applying ResNet
-
Урок 57. 00:04:041x1 Convolutions
-
Урок 58. 00:06:48Optional: Inception
-
Урок 59. 00:04:14Different sized images using the same network
-
Урок 60. 00:02:28ResNet Section Summary
-
Урок 61. 00:05:05SSD Section Intro
-
Урок 62. 00:06:37Object Localization
-
Урок 63. 00:02:54What is Object Detection?
-
Урок 64. 00:08:41How would you find an object in an image?
-
Урок 65. 00:03:48The Problem of Scale
-
Урок 66. 00:03:53The Problem of Shape
-
Урок 67. 00:05:462020 Update - More Fun and Excitement
-
Урок 68. 00:11:15Using Pretrained RetinaNet
-
Урок 69. 00:04:27RetinaNet with Custom Dataset (pt 1)
-
Урок 70. 00:09:21RetinaNet with Custom Dataset (pt 2)
-
Урок 71. 00:07:06RetinaNet with Custom Dataset (pt 3)
-
Урок 72. 00:05:07Optional: Intersection over Union & Non-max Suppression
-
Урок 73. 00:02:53SSD Section Summary
-
Урок 74. 00:02:53Style Transfer Section Intro
-
Урок 75. 00:11:24Style Transfer Theory
-
Урок 76. 00:08:03Optimizing the Loss
-
Урок 77. 00:07:47Code pt 1
-
Урок 78. 00:07:14Code pt 2
-
Урок 79. 00:03:51Code pt 3
-
Урок 80. 00:02:22Style Transfer Section Summary
-
Урок 81. 00:07:10Class Activation Maps (Theory)
-
Урок 82. 00:09:55Class Activation Maps (Code)
-
Урок 83. 00:15:52GAN Theory
-
Урок 84. 00:12:11GAN Code
-
Урок 85. 00:13:38Localization Introduction and Outline
-
Урок 86. 00:10:40Localization Code Outline (pt 1)
-
Урок 87. 00:09:11Localization Code (pt 1)
-
Урок 88. 00:04:53Localization Code Outline (pt 2)
-
Урок 89. 00:11:04Localization Code (pt 2)
-
Урок 90. 00:03:19Localization Code Outline (pt 3)
-
Урок 91. 00:04:17Localization Code (pt 3)
-
Урок 92. 00:03:20Localization Code Outline (pt 4)
-
Урок 93. 00:02:07Localization Code (pt 4)
-
Урок 94. 00:07:43Localization Code Outline (pt 5)
-
Урок 95. 00:08:40Localization Code (pt 5)
-
Урок 96. 00:07:07Localization Code Outline (pt 6)
-
Урок 97. 00:07:38Localization Code (pt 6)
-
Урок 98. 00:04:59Localization Code Outline (pt 7)
-
Урок 99. 00:12:08Localization Code (pt 7)
-
Урок 100. 00:07:28(Review) Tensorflow Basics
-
Урок 101. 00:09:44(Review) Tensorflow Neural Network in Code
-
Урок 102. 00:06:49(Review) Keras Discussion
-
Урок 103. 00:06:38(Review) Keras Neural Network in Code
-
Урок 104. 00:04:27(Review) Keras Functional API
-
Урок 105. 00:01:50(Review) How to easily convert Keras into Tensorflow 2.0 code
-
Урок 106. 00:20:21Windows-Focused Environment Setup 2018
-
Урок 107. 00:17:31How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow
-
Урок 108. 00:15:55How to Code by Yourself (part 1)
-
Урок 109. 00:09:24How to Code by Yourself (part 2)
-
Урок 110. 00:12:30Proof that using Jupyter Notebook is the same as not using it
-
Урок 111. 00:04:39Python 2 vs Python 3
-
Урок 112. 00:10:25How to Succeed in this Course (Long Version)
-
Урок 113. 00:22:05Is this for Beginners or Experts? Academic or Practical? Fast or slow-paced?
-
Урок 114. 00:11:20Machine Learning and AI Prerequisite Roadmap (pt 1)
-
Урок 115. 00:16:08Machine Learning and AI Prerequisite Roadmap (pt 2)
-
Урок 116. 00:02:49What is the Appendix?
-
Урок 117. 00:05:32BONUS: Where to get discount coupons and FREE deep learning material
- Категории
- Источники
- Все курсы
- Разделы
- Книги