1. Урок 1.00:02:36
    Introduction
  2. Урок 2.00:06:50
    Outline and Perspective
  3. Урок 3.00:08:27
    Where to get the code
  4. Урок 4.00:11:56
    Anyone Can Succeed in this Course
  5. Урок 5.00:14:27
    What is Machine Learning?
  6. Урок 6.00:16:00
    Code Preparation (Classification Theory)
  7. Урок 7.00:04:39
    Beginner's Code Preamble
  8. Урок 8.00:08:41
    Classification Notebook
  9. Урок 9.00:07:19
    Code Preparation (Regression Theory)
  10. Урок 10.00:10:35
    Regression Notebook
  11. Урок 11.00:09:59
    The Neuron
  12. Урок 12.00:10:54
    How does a model "learn"?
  13. Урок 13.00:06:46
    Making Predictions
  14. Урок 14.00:04:28
    Saving and Loading a Model
  15. Урок 15.00:03:04
    Suggestion Box
  16. Урок 16.00:06:01
    Artificial Neural Networks Section Introduction
  17. Урок 17.00:09:41
    Forward Propagation
  18. Урок 18.00:09:44
    The Geometrical Picture
  19. Урок 19.00:17:19
    Activation Functions
  20. Урок 20.00:08:42
    Multiclass Classification
  21. Урок 21.00:12:37
    How to Represent Images
  22. Урок 22.00:12:43
    Code Preparation (ANN)
  23. Урок 23.00:08:37
    ANN for Image Classification
  24. Урок 24.00:11:06
    ANN for Regression
  25. Урок 25.00:16:39
    What is Convolution? (part 1)
  26. Урок 26.00:05:57
    What is Convolution? (part 2)
  27. Урок 27.00:06:42
    What is Convolution? (part 3)
  28. Урок 28.00:15:59
    Convolution on Color Images
  29. Урок 29.00:20:59
    CNN Architecture
  30. Урок 30.00:15:14
    CNN Code Preparation
  31. Урок 31.00:06:47
    CNN for Fashion MNIST
  32. Урок 32.00:04:29
    CNN for CIFAR-10
  33. Урок 33.00:08:52
    Data Augmentation
  34. Урок 34.00:05:15
    Batch Normalization
  35. Урок 35.00:10:23
    Improving CIFAR-10 Results
  36. Урок 36.00:03:05
    VGG Section Intro
  37. Урок 37.00:07:01
    What's so special about VGG?
  38. Урок 38.00:08:23
    Transfer Learning
  39. Урок 39.00:02:20
    Relationship to Greedy Layer-Wise Pretraining
  40. Урок 40.00:02:18
    Getting the data
  41. Урок 41.00:09:24
    Code pt 1
  42. Урок 42.00:03:42
    Code pt 2
  43. Урок 43.00:03:28
    Code pt 3
  44. Урок 44.00:01:49
    VGG Section Summary
  45. Урок 45.00:02:50
    ResNet Section Intro
  46. Урок 46.00:12:46
    ResNet Architecture
  47. Урок 47.00:02:26
    Building ResNet - Strategy
  48. Урок 48.00:05:17
    Uh-oh! What Happens if the Implementation Changes?
  49. Урок 49.00:03:35
    Building ResNet - Conv Block Details
  50. Урок 50.00:06:09
    Building ResNet - Conv Block Code
  51. Урок 51.00:01:24
    Building ResNet - Identity Block Details
  52. Урок 52.00:02:29
    Building ResNet - First Few Layers
  53. Урок 53.00:04:16
    Building ResNet - First Few Layers (Code)
  54. Урок 54.00:04:20
    Building ResNet - Putting it all together
  55. Урок 55.00:01:17
    Exercise: Apply ResNet
  56. Урок 56.00:02:40
    Applying ResNet
  57. Урок 57.00:04:04
    1x1 Convolutions
  58. Урок 58.00:06:48
    Optional: Inception
  59. Урок 59.00:04:14
    Different sized images using the same network
  60. Урок 60.00:02:28
    ResNet Section Summary
  61. Урок 61.00:05:05
    SSD Section Intro
  62. Урок 62.00:06:37
    Object Localization
  63. Урок 63.00:02:54
    What is Object Detection?
  64. Урок 64.00:08:41
    How would you find an object in an image?
  65. Урок 65.00:03:48
    The Problem of Scale
  66. Урок 66.00:03:53
    The Problem of Shape
  67. Урок 67.00:05:46
    2020 Update - More Fun and Excitement
  68. Урок 68.00:11:15
    Using Pretrained RetinaNet
  69. Урок 69.00:04:27
    RetinaNet with Custom Dataset (pt 1)
  70. Урок 70.00:09:21
    RetinaNet with Custom Dataset (pt 2)
  71. Урок 71.00:07:06
    RetinaNet with Custom Dataset (pt 3)
  72. Урок 72.00:05:07
    Optional: Intersection over Union & Non-max Suppression
  73. Урок 73.00:02:53
    SSD Section Summary
  74. Урок 74.00:02:53
    Style Transfer Section Intro
  75. Урок 75.00:11:24
    Style Transfer Theory
  76. Урок 76.00:08:03
    Optimizing the Loss
  77. Урок 77.00:07:47
    Code pt 1
  78. Урок 78.00:07:14
    Code pt 2
  79. Урок 79.00:03:51
    Code pt 3
  80. Урок 80.00:02:22
    Style Transfer Section Summary
  81. Урок 81.00:07:10
    Class Activation Maps (Theory)
  82. Урок 82.00:09:55
    Class Activation Maps (Code)
  83. Урок 83.00:15:52
    GAN Theory
  84. Урок 84.00:12:11
    GAN Code
  85. Урок 85.00:13:38
    Localization Introduction and Outline
  86. Урок 86.00:10:40
    Localization Code Outline (pt 1)
  87. Урок 87.00:09:11
    Localization Code (pt 1)
  88. Урок 88.00:04:53
    Localization Code Outline (pt 2)
  89. Урок 89.00:11:04
    Localization Code (pt 2)
  90. Урок 90.00:03:19
    Localization Code Outline (pt 3)
  91. Урок 91.00:04:17
    Localization Code (pt 3)
  92. Урок 92.00:03:20
    Localization Code Outline (pt 4)
  93. Урок 93.00:02:07
    Localization Code (pt 4)
  94. Урок 94.00:07:43
    Localization Code Outline (pt 5)
  95. Урок 95.00:08:40
    Localization Code (pt 5)
  96. Урок 96.00:07:07
    Localization Code Outline (pt 6)
  97. Урок 97.00:07:38
    Localization Code (pt 6)
  98. Урок 98.00:04:59
    Localization Code Outline (pt 7)
  99. Урок 99.00:12:08
    Localization Code (pt 7)
  100. Урок 100.00:07:28
    (Review) Tensorflow Basics
  101. Урок 101.00:09:44
    (Review) Tensorflow Neural Network in Code
  102. Урок 102.00:06:49
    (Review) Keras Discussion
  103. Урок 103.00:06:38
    (Review) Keras Neural Network in Code
  104. Урок 104.00:04:27
    (Review) Keras Functional API
  105. Урок 105.00:01:50
    (Review) How to easily convert Keras into Tensorflow 2.0 code
  106. Урок 106.00:20:21
    Windows-Focused Environment Setup 2018
  107. Урок 107.00:17:31
    How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow
  108. Урок 108.00:15:55
    How to Code by Yourself (part 1)
  109. Урок 109.00:09:24
    How to Code by Yourself (part 2)
  110. Урок 110.00:12:30
    Proof that using Jupyter Notebook is the same as not using it
  111. Урок 111.00:04:39
    Python 2 vs Python 3
  112. Урок 112.00:10:25
    How to Succeed in this Course (Long Version)
  113. Урок 113.00:22:05
    Is this for Beginners or Experts? Academic or Practical? Fast or slow-paced?
  114. Урок 114.00:11:20
    Machine Learning and AI Prerequisite Roadmap (pt 1)
  115. Урок 115.00:16:08
    Machine Learning and AI Prerequisite Roadmap (pt 2)
  116. Урок 116.00:02:49
    What is the Appendix?
  117. Урок 117.00:05:32
    BONUS: Where to get discount coupons and FREE deep learning material