Пройдите собеседование по глубокому обучению с уверенностью с помощью нашего всеобъемлющего подготовительного курса! Освойте ключевые концепции и продвинутые техники, такие как GAN и Transformers. Углубите свои знания и укрепите уверенность благодаря детальным ответам на самые популярные вопросы на интервью.
Это пробный урок. Оформите подписку, чтобы получить доступ ко всем материалам курса. Премиум
Урок 1.
00:04:07
Q1 - What is Deep Learning?
Урок 2.
00:04:14
Q2 - What is Deep Learning?
Урок 3.
00:07:14
Q3 - What is a Neural Network?
Урок 4.
00:03:34
Q4 - Explain the concept of a neuron in Deep Learning.
Урок 5.
00:07:53
Q5 - Explain architecture of Neural Networks in simple way
Урок 6.
00:04:01
Q6 - What is an activation function in a Neural Network?
Урок 7.
00:13:43
Q7 - Name few popular activation functions and describe them
Урок 8.
00:01:27
Q8 - What happens if you do not use any activation functions in a NN?
Урок 9.
00:05:53
Q9 - Describe how training of basic Neural Networks works
Урок 10.
00:10:41
Q10 - What is Gradient Descent?
Урок 11.
00:05:34
Q11 - What is the function of an optimizer in Deep Learning?
Урок 12.
00:08:39
Q12 - What is backpropagation, and why is it important in Deep Learning?
Урок 13.
00:03:05
Q13 - How is backpropagation different from gradient descent?
Урок 14.
00:07:01
Q14 - Describe what Vanishing Gradient Problem is and it’s impact on NN
Урок 15.
00:08:31
Q15 - Describe what Exploding Gradients Problem is and it’s impact on NN
Урок 16.
00:04:40
Q16 - There is a neuron results in a large error in backpropagation. Reason?
Урок 17.
00:06:18
Q17 - What do you understand by a computational graph?
Урок 18.
00:06:39
Q18 - What is Loss Function and what are various Loss functions used in DL?
Урок 19.
00:03:41
Q19 - What is Cross Entropy loss function and how is it called in industry?
Урок 20.
00:03:40
Q20 - Why is Cross-entropy preferred as cost function for multi-class classification?
Урок 21.
00:06:11
Q21 - What is SGD and why it’s used in training Neural Networks?
Урок 22.
00:05:52
Q22 - Why does stochastic gradient descent oscillate towards local minima?
Урок 23.
00:05:19
Q23: How is GD different from SGD
Урок 24.
00:06:04
Q24: What is SGD with Momentum
Урок 25.
00:05:27
Q25 - Batch Gradient Descent, Minibatch Gradient Descent vs SGD
Урок 26.
00:06:49
Q26: What is impact of Batch Size
Урок 27.
00:04:10
Q27: Batch Size vs Model Performance
Урок 28.
00:04:39
Q28: What is Hessian, usage in DL
Урок 29.
00:05:29
Q29: What is RMSProp and how does it work?
Урок 30.
00:04:33
Q30: What is Adaptive Learning
Урок 31.
00:07:03
Q31: What is Adam Optimizer
Урок 32.
00:04:53
Q32: What is AdamW Algorithm in Neural Networks
Урок 33.
00:08:32
Q33: What is Batch Normalization
Урок 34.
00:03:39
Q34: What is Layer Normalization
Урок 35.
00:09:23
Q35: What are Residual Connections
Урок 36.
00:03:41
Q36: What is Gradient Clipping
Урок 37.
00:04:05
Q37: What is Xavier Initialization
Урок 38.
00:03:16
Q38: What are ways to solve Vanishing Gradients
Урок 39.
00:01:12
Q39: How to solve Exploding Gradient Problem
Урок 40.
00:02:39
Q40: What is Overfitting
Урок 41.
00:05:19
Q41: What is Dropout
Урок 42.
00:00:42
Q42: How does Dropout prevent Overfitting in Neural Networks
Урок 43.
00:04:42
Q43: Is Dropout like Random Forest
Урок 44.
00:02:36
Q44: What is the impact of DropOut on the training vs testing
Урок 45.
00:03:19
Q45: What are L2 and L1 Regularizations for Overfitting NN
Урок 46.
00:04:05
Q46: What is the difference between L1 and L2 Regularisations
Урок 47.
00:01:52
Q47: How do L1 vs L2 Regularization impact the Weights in a NN?
Урок 48.
00:02:28
Q48: What is the Curse of Dimensionality in Machine Learning | Deep Learning Interview Question
Урок 49.
00:04:05
Q49 - How Deep Learning models tackle the Curse of Dimensionality | Deep Learning Interview Question
Урок 50.
00:02:58
Q50: What are Generative Models, give examples?
Урок 51.
00:03:04
Q51 - What are Discriminative Models, give examples?
Урок 52.
00:08:35
Q52 - What is the difference between generative and discriminative models?
Урок 53.
00:04:31
Q53 - What are Autoencoders and How Do They Work?
Урок 54.
00:04:32
Q54: What is the Difference Beetween Autoenconders and other Neural Networks?
Урок 55.
00:01:25
Q55 - What are some popular autoencoders, mention few?
Урок 56.
00:01:04
Q56 - What is the role of the Loss function in Autoencoders, & how is it different from other NN?
Урок 57.
00:02:21
Q57 - How do autoencoders differ from (PCA)?
Урок 58.
00:03:27
Q58 - Which one is better for reconstruction linear autoencoder or PCA?
Урок 59.
00:06:31
Q59 - How can you recreate PCA with neural networks?
Урок 60.
00:10:36
Q60 - Can You Explain How Autoencoders Can be Used for Anomaly Detection?
Урок 61.
00:02:20
Q61 - What are some applications of AutoEncoders
Урок 62.
00:04:09
Q62 - How can uncertainty be introduced into Autoencoders, & what are the benefits and challenges of doing so?
Урок 63.
00:03:18
Q63 - Can you explain what VAE is and describe its training process?
Урок 64.
00:03:48
Q64 - Explain what Kullback-Leibler (KL) divergence is & why does it matter in VAEs?
Урок 65.
00:01:02
Q65 - Can you explain what reconstruction loss is & it’s function in VAEs?
Урок 66.
00:04:35
Q66 - What is ELBO & What is this trade-off between reconstruction quality & regularization?
Урок 67.
00:03:49
Q67 - Can you explain the training & optimization process of VAEs?
Урок 68.
00:03:12
Q68 - How would you balance reconstruction quality and latent space regularization in a practical Variational Autoencoder implementation?
Урок 69.
00:04:15
Q69 - What is Reparametrization trick and why is it important?
Урок 70.
00:01:45
Q70 - What is DGG "Deep Clustering via a Gaussian-mixture Variational Autoencoder (VAE)” with Graph Embedding
Урок 71.
00:02:24
Q71 - How does a neural network with one layer and one input and output compare to a logistic regression?
Урок 72.
00:01:06
Q72 - In a logistic regression model, will all the gradient descent algorithms lead to the same model if run for a long time?
Урок 73.
00:05:10
Q73 - What is a Convolutional Neural Network?
Урок 74.
00:02:02
Q74 - What is padding and why it’s used in Convolutional Neural Networks (CNNs)?
Урок 75.
00:13:18
Q75 - Padded Convolutions: What are Valid and Same Paddings?
Урок 76.
00:05:43
Q76 - What is stride in CNN and why is it used?
Урок 77.
00:02:28
Q77 - What is the impact of Stride size on CNNs?
Урок 78.
00:09:12
Q78 - What is Pooling, what is the intuition behind it and why is it used in CNNs?
Урок 79.
00:02:49
Q79 - What are common types of pooling in CNN?
Урок 80.
00:03:47
Q80 - Why min pooling is not used?
Урок 81.
00:01:36
Q81 - What is translation invariance and why is it important?
Урок 82.
00:02:55
Q82 - How does a 1D Convolutional Neural Network (CNN) work?
Урок 83.
00:07:09
Q83 - What are Recurrent Neural Networks, and walk me through the architecture of RNNs.
Урок 84.
00:01:30
Q84 - What are the main disadvantages of RNNs, especially in Machine Translation Tasks?
Урок 85.
00:06:16
Q85 - What are some applications of RNN?
Урок 86.
00:05:05
Q86 - What technique is commonly used in RNNs to combat the Vanishing Gradient Problem?
Урок 87.
00:05:24
Q87 - What are LSTMs and their key components?
Урок 88.
00:06:16
Q88 - What limitations of RNN that LSTMs do and don’t address and how?
Урок 89.
00:03:35
Q89 - What is a gated recurrent unit (GRU) and how is it different from LSTMs?
Урок 90.
00:06:17
Q90 - Describe how Generative Adversarial Networks (GANs) work and the roles of the generator and discriminator in learning.
Урок 91.
00:04:10
Q91 - Describe how would you use GANs for image translation or creating photorealistic images?
Урок 92.
00:04:12
Q92 - How would you address mode collapse and vanishing gradients in GAN training, and what is their impact on data quality?
Урок 93.
00:09:04
Q93- Minimax and Nash Equilibrium in GAN
Урок 94.
00:06:01
Q94 - What are token embeddings and what is their function?
Урок 95.
00:11:26
Q95 - What is self-attention mechanism?
Урок 96.
00:06:54
Q96 - What is Multi-Head Self-Attention and how does it enable more effective processing of sequences in Transformers?
Урок 97.
00:05:52
Q97 - What are transformers and why are they important in combating problems of models like RNN and LSTMs?
Урок 98.
00:08:56
Q98 - Walk me through the architecture of transformers.
Урок 99.
00:05:48
Q99 - What are positional encodings and how are they calculated?
Урок 100.
00:02:13
Q100 - Why do we add positional encodings to Transformers but not to
Автор - LunarTech
LunarTech
LunarTech - это образовательная платформа, специализирующаяся на обучении в области искусственного интеллекта и цифровых навыков. Компания предлагает практические курсы, направленные на приобретение опыта через реальные проекты, развитие портфолио и поддержку в построении карьеры.
Команда внимательно читает ваши комментарии и оперативно на них реагирует. Вы можете спокойно оставлять запросы на обновления или задавать любые вопросы о курсе здесь.
Это один из самых захватывающих курсов, которые я сделал, и он действительно показывает, как быстро и далеко зашло обучение. Когда я впервые начал серию глубокого обучения, я никогда не думал, что сделаю два курса по сверточным нейронным сетям.
Вы знаете основы машинного обучения. Вы знаете как программировать ML. Вы знаете как масштабировать ML. Вы знаете как проектировать ML. Пришло время для реальных интервью по ML.
+1
[Книга] Глубокое обучение с нуля (Zero to Deep Learning)