Урок 1.00:04:04
Introduction
Урок 2.00:12:48
Outline
Урок 3.00:08:27
Where to get the code
Урок 4.00:12:33
Intro to Google Colab, how to use a GPU or TPU for free
Урок 5.00:07:55
Tensorflow 2.0 in Google Colab
Урок 6.00:11:42
Uploading your own data to Google Colab
Урок 7.00:08:55
Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn?
Урок 8.00:05:52
How to Succeed in this Course
Урок 9.00:14:27
What is Machine Learning?
Урок 10.00:16:00
Code Preparation (Classification Theory)
Урок 11.00:04:39
Beginner's Code Preamble
Урок 12.00:08:41
Classification Notebook
Урок 13.00:07:20
Code Preparation (Regression Theory)
Урок 14.00:10:35
Regression Notebook
Урок 15.00:09:59
The Neuron
Урок 16.00:10:55
How does a model "learn"?
Урок 17.00:06:46
Making Predictions
Урок 18.00:04:29
Saving and Loading a Model
Урок 19.00:04:28
Why Keras?
Урок 20.00:03:04
Suggestion Box
Урок 21.00:06:01
Artificial Neural Networks Section Introduction
Урок 22.00:09:41
Forward Propagation
Урок 23.00:09:44
The Geometrical Picture
Урок 24.00:17:19
Activation Functions
Урок 25.00:08:42
Multiclass Classification
Урок 26.00:12:37
How to Represent Images
Урок 27.00:12:43
Code Preparation (ANN)
Урок 28.00:08:37
ANN for Image Classification
Урок 29.00:11:06
ANN for Regression
Урок 30.00:16:39
What is Convolution? (part 1)
Урок 31.00:05:57
What is Convolution? (part 2)
Урок 32.00:06:42
What is Convolution? (part 3)
Урок 33.00:15:59
Convolution on Color Images
Урок 34.00:20:59
CNN Architecture
Урок 35.00:15:14
CNN Code Preparation
Урок 36.00:06:47
CNN for Fashion MNIST
Урок 37.00:04:29
CNN for CIFAR-10
Урок 38.00:08:52
Data Augmentation
Урок 39.00:05:15
Batch Normalization
Урок 40.00:10:23
Improving CIFAR-10 Results
Урок 41.00:18:28
Sequence Data
Урок 42.00:10:36
Forecasting
Урок 43.00:12:02
Autoregressive Linear Model for Time Series Prediction
Урок 44.00:04:13
Proof that the Linear Model Works
Урок 45.00:21:35
Recurrent Neural Networks
Урок 46.00:05:51
RNN Code Preparation
Урок 47.00:11:12
RNN for Time Series Prediction
Урок 48.00:08:28
Paying Attention to Shapes
Урок 49.00:17:36
GRU and LSTM (pt 1)
Урок 50.00:11:37
GRU and LSTM (pt 2)
Урок 51.00:09:20
A More Challenging Sequence
Урок 52.00:19:27
Demo of the Long Distance Problem
Урок 53.00:04:42
RNN for Image Classification (Theory)
Урок 54.00:04:01
RNN for Image Classification (Code)
Урок 55.00:12:04
Stock Return Predictions using LSTMs (pt 1)
Урок 56.00:05:46
Stock Return Predictions using LSTMs (pt 2)
Урок 57.00:12:00
Stock Return Predictions using LSTMs (pt 3)
Урок 58.00:05:15
Other Ways to Forecast
Урок 59.00:13:13
Embeddings
Урок 60.00:13:18
Code Preparation (NLP)
Урок 61.00:05:31
Text Preprocessing
Урок 62.00:08:20
Text Classification with LSTMs
Урок 63.00:08:08
CNNs for Text
Урок 64.00:06:11
Text Classification with CNNs
Урок 65.00:13:11
Recommender Systems with Deep Learning Theory
Урок 66.00:09:18
Recommender Systems with Deep Learning Code
Урок 67.00:08:13
Transfer Learning Theory
Урок 68.00:05:42
Some Pre-trained Models (VGG, ResNet, Inception, MobileNet)
Урок 69.00:07:04
Large Datasets and Data Generators
Урок 70.00:04:52
2 Approaches to Transfer Learning
Урок 71.00:10:50
Transfer Learning Code (pt 1)
Урок 72.00:08:13
Transfer Learning Code (pt 2)
Урок 73.00:15:52
GAN Theory
Урок 74.00:12:11
GAN Code
Урок 75.00:06:35
Deep Reinforcement Learning Section Introduction
Урок 76.00:20:19
Elements of a Reinforcement Learning Problem
Урок 77.00:09:25
States, Actions, Rewards, Policies
Урок 78.00:10:08
Markov Decision Processes (MDPs)
Урок 79.00:04:57
The Return
Урок 80.00:09:54
Value Functions and the Bellman Equation
Урок 81.00:07:19
What does it mean to “learn”?
Урок 82.00:09:50
Solving the Bellman Equation with Reinforcement Learning (pt 1)
Урок 83.00:12:02
Solving the Bellman Equation with Reinforcement Learning (pt 2)
Урок 84.00:06:10
Epsilon-Greedy
Урок 85.00:14:16
Q-Learning
Урок 86.00:14:06
Deep Q-Learning / DQN (pt 1)
Урок 87.00:10:26
Deep Q-Learning / DQN (pt 2)
Урок 88.00:05:58
How to Learn Reinforcement Learning
Урок 89.00:05:15
Reinforcement Learning Stock Trader Introduction
Урок 90.00:12:23
Data and Environment
Урок 91.00:05:41
Replay Buffer
Урок 92.00:06:57
Program Design and Layout
Урок 93.00:05:47
Code pt 1
Урок 94.00:09:41
Code pt 2
Урок 95.00:06:28
Code pt 3
Урок 96.00:07:26
Code pt 4
Урок 97.00:03:37
Reinforcement Learning Stock Trader Discussion
Урок 98.00:08:20
Help! Why is the code slower on my machine?
Урок 99.00:05:56
What is a Web Service? (Tensorflow Serving pt 1)
Урок 100.00:16:57
Tensorflow Serving pt 2
Урок 101.00:08:31
Tensorflow Lite (TFLite)
Урок 102.00:08:48
Why is Google the King of Distributed Computing?
Урок 103.00:07:01
Training with Distributed Strategies
Урок 104.00:10:03
Differences Between Tensorflow 1.x and Tensorflow 2.x
Урок 105.00:09:40
Constants and Basic Computation
Урок 106.00:13:00
Variables and Gradient Tape
Урок 107.00:10:48
Build Your Own Custom Model
Урок 108.00:09:12
Mean Squared Error
Урок 109.00:05:59
Binary Cross Entropy
Урок 110.00:08:07
Categorical Cross Entropy
Урок 111.00:07:53
Gradient Descent
Урок 112.00:04:37
Stochastic Gradient Descent
Урок 113.00:06:11
Momentum
Урок 114.00:11:46
Variable and Adaptive Learning Rates
Урок 115.00:13:16
Adam (pt 1)
Урок 116.00:11:15
Adam (pt 2)
Урок 117.00:17:31
How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow
Урок 118.00:20:21
Anaconda Environment Setup
Урок 119.00:22:16
Installing NVIDIA GPU-Accelerated Deep Learning Libraries on your Home Computer
Урок 120.00:15:55
How to Code Yourself (part 1)
Урок 121.00:09:24
How to Code Yourself (part 2)
Урок 122.00:12:30
Proof that using Jupyter Notebook is the same as not using it
Урок 123.00:10:04
Is Theano Dead?
Урок 124.00:10:25
How to Succeed in this Course (Long Version)
Урок 125.00:22:05
Is this for Beginners or Experts? Academic or Practical? Fast or slow-paced?
Урок 126.00:11:19
Machine Learning and AI Prerequisite Roadmap (pt 1)
Урок 127.00:16:08
Machine Learning and AI Prerequisite Roadmap (pt 2)
Урок 128.00:02:49
What is the Appendix?
Урок 129.00:05:32
BONUS: Where to get discount coupons and FREE deep learning material