Урок 1.00:05:07
A Practical Example: What You Will Learn in This Course
Урок 2.00:03:35
What Does the Course Cover
Урок 3.00:05:22
Data Science and Business Buzzwords: Why are there so Many?
Урок 4.00:03:51
What is the difference between Analysis and Analytics
Урок 5.00:08:27
Business Analytics, Data Analytics, and Data Science: An Introduction
Урок 6.00:09:32
Continuing with BI, ML, and AI
Урок 7.00:04:04
A Breakdown of our Data Science Infographic
Урок 8.00:07:20
Applying Traditional Data, Big Data, BI, Traditional Data Science and ML
Урок 9.00:04:46
The Reason Behind These Disciplines
Урок 10.00:08:15
Techniques for Working with Traditional Data
Урок 11.00:01:45
Real Life Examples of Traditional Data
Урок 12.00:04:27
Techniques for Working with Big Data
Урок 13.00:01:33
Real Life Examples of Big Data
Урок 14.00:06:47
Business Intelligence (BI) Techniques
Урок 15.00:01:43
Real Life Examples of Business Intelligence (BI)
Урок 16.00:09:09
Techniques for Working with Traditional Methods
Урок 17.00:02:47
Real Life Examples of Traditional Methods
Урок 18.00:06:56
Machine Learning (ML) Techniques
Урок 19.00:08:14
Types of Machine Learning
Урок 20.00:02:12
Real Life Examples of Machine Learning (ML)
Урок 21.00:05:52
Necessary Programming Languages and Software Used in Data Science
Урок 22.00:03:30
Finding the Job - What to Expect and What to Look for
Урок 23.00:04:11
Debunking Common Misconceptions
Урок 24.00:07:10
The Basic Probability Formula
Урок 25.00:05:30
Computing Expected Values
Урок 26.00:05:01
Frequency
Урок 27.00:05:27
Events and Their Complements
Урок 28.00:01:05
Fundamentals of Combinatorics
Урок 29.00:03:22
Permutations and How to Use Them
Урок 30.00:03:36
Simple Operations with Factorials
Урок 31.00:03:00
Solving Variations with Repetition
Урок 32.00:03:49
Solving Variations without Repetition
Урок 33.00:04:52
Solving Combinations
Урок 34.00:03:27
Symmetry of Combinations
Урок 35.00:02:53
Solving Combinations with Separate Sample Spaces
Урок 36.00:03:13
Combinatorics in Real-Life: The Lottery
Урок 37.00:02:56
A Recap of Combinatorics
Урок 38.00:10:54
A Practical Example of Combinatorics
Урок 39.00:04:26
Sets and Events
Урок 40.00:03:46
Ways Sets Can Interact
Урок 41.00:02:07
Intersection of Sets
Урок 42.00:04:52
Union of Sets
Урок 43.00:02:10
Mutually Exclusive Sets
Урок 44.00:03:02
Dependence and Independence of Sets
Урок 45.00:04:17
The Conditional Probability Formula
Урок 46.00:03:04
The Law of Total Probability
Урок 47.00:02:22
The Additive Rule
Урок 48.00:04:06
The Multiplication Law
Урок 49.00:05:45
Bayes' Law
Урок 50.00:14:53
A Practical Example of Bayesian Inference
Урок 51.00:06:30
Fundamentals of Probability Distributions
Урок 52.00:07:33
Types of Probability Distributions
Урок 53.00:02:01
Characteristics of Discrete Distributions
Урок 54.00:02:14
Discrete Distributions: The Uniform Distribution
Урок 55.00:03:28
Discrete Distributions: The Bernoulli Distribution
Урок 56.00:07:05
Discrete Distributions: The Binomial Distribution
Урок 57.00:05:28
Discrete Distributions: The Poisson Distribution
Урок 58.00:07:13
Characteristics of Continuous Distributions
Урок 59.00:04:09
Continuous Distributions: The Normal Distribution
Урок 60.00:04:26
Continuous Distributions: The Standard Normal Distribution
Урок 61.00:02:30
Continuous Distributions: The Students' T Distribution
Урок 62.00:02:23
Continuous Distributions: The Chi-Squared Distribution
Урок 63.00:03:16
Continuous Distributions: The Exponential Distribution
Урок 64.00:04:08
Continuous Distributions: The Logistic Distribution
Урок 65.00:15:04
A Practical Example of Probability Distributions
Урок 66.00:07:47
Probability in Finance
Урок 67.00:06:19
Probability in Statistics
Урок 68.00:04:48
Probability in Data Science
Урок 69.00:04:03
Population and Sample
Урок 70.00:04:34
Types of Data
Урок 71.00:03:44
Levels of Measurement
Урок 72.00:04:53
Categorical Variables - Visualization Techniques
Урок 73.00:03:10
Numerical Variables - Frequency Distribution Table
Урок 74.00:02:15
The Histogram
Урок 75.00:04:45
Cross Tables and Scatter Plots
Урок 76.00:04:21
Mean, median and mode
Урок 77.00:02:38
Skewness
Урок 78.00:05:56
Variance
Урок 79.00:04:41
Standard Deviation and Coefficient of Variation
Урок 80.00:03:24
Covariance
Урок 81.00:03:18
Correlation Coefficient
Урок 82.00:16:17
Practical Example: Descriptive Statistics
Урок 83.00:01:02
Introduction
Урок 84.00:04:34
What is a Distribution
Урок 85.00:03:55
The Normal Distribution
Урок 86.00:03:32
The Standard Normal Distribution
Урок 87.00:04:21
Central Limit Theorem
Урок 88.00:01:28
Standard error
Урок 89.00:03:08
Estimators and Estimates
Урок 90.00:02:42
What are Confidence Intervals?
Урок 91.00:08:02
Confidence Intervals; Population Variance Known; Z-score
Урок 92.00:04:39
Confidence Interval Clarifications
Урок 93.00:03:24
Student's T Distribution
Урок 94.00:04:37
Confidence Intervals; Population Variance Unknown; T-score
Урок 95.00:04:54
Margin of Error
Урок 96.00:06:05
Confidence intervals. Two means. Dependent samples
Урок 97.00:04:32
Confidence intervals. Two means. Independent Samples (Part 1)
Урок 98.00:03:58
Confidence intervals. Two means. Independent Samples (Part 2)
Урок 99.00:01:28
Confidence intervals. Two means. Independent Samples (Part 3)
Урок 100.00:10:07
Practical Example: Inferential Statistics
Урок 101.00:05:53
Null vs Alternative Hypothesis
Урок 102.00:07:06
Rejection Region and Significance Level
Урок 103.00:04:15
Type I Error and Type II Error
Урок 104.00:06:35
Test for the Mean. Population Variance Known
Урок 105.00:04:14
p-value
Урок 106.00:04:50
Test for the Mean. Population Variance Unknown
Урок 107.00:05:19
Test for the Mean. Dependent Samples
Урок 108.00:04:23
Test for the mean. Independent Samples (Part 1)
Урок 109.00:04:27
Test for the mean. Independent Samples (Part 2)
Урок 110.00:07:17
Practical Example: Hypothesis Testing
Урок 111.00:05:05
Introduction to Programming
Урок 112.00:05:12
Why Python?
Урок 113.00:03:30
Why Jupyter?
Урок 114.00:06:50
Installing Python and Jupyter
Урок 115.00:03:16
Understanding Jupyter's Interface - the Notebook Dashboard
Урок 116.00:06:16
Prerequisites for Coding in the Jupyter Notebooks
Урок 117.00:03:38
Variables
Урок 118.00:03:06
Numbers and Boolean Values in Python
Урок 119.00:05:41
Python Strings
Урок 120.00:03:24
Using Arithmetic Operators in Python
Урок 121.00:01:34
The Double Equality Sign
Урок 122.00:01:09
How to Reassign Values
Урок 123.00:01:35
Add Comments
Урок 124.00:00:50
Understanding Line Continuation
Урок 125.00:01:19
Indexing Elements
Урок 126.00:01:45
Structuring with Indentation
Урок 127.00:02:11
Comparison Operators
Урок 128.00:05:37
Logical and Identity Operators
Урок 129.00:03:02
The IF Statement
Урок 130.00:02:46
The ELSE Statement
Урок 131.00:05:35
The ELIF Statement
Урок 132.00:02:15
A Note on Boolean Values
Урок 133.00:02:03
Defining a Function in Python
Урок 134.00:03:50
How to Create a Function with a Parameter
Урок 135.00:02:37
Defining a Function in Python - Part II
Урок 136.00:01:50
How to Use a Function within a Function
Урок 137.00:03:07
Conditional Statements and Functions
Урок 138.00:01:18
Functions Containing a Few Arguments
Урок 139.00:03:57
Built-in Functions in Python
Урок 140.00:08:19
Lists
Урок 141.00:04:32
List Slicing
Урок 142.00:06:41
Tuples
Урок 143.00:08:28
Dictionaries
Урок 144.00:05:41
For Loops
Урок 145.00:05:11
While Loops and Incrementing
Урок 146.00:06:23
Lists with the range() Function
Урок 147.00:06:31
Conditional Statements and Loops
Урок 148.00:02:28
Conditional Statements, Functions, and Loops
Урок 149.00:06:22
How to Iterate over Dictionaries
Урок 150.00:05:01
Object Oriented Programming
Урок 151.00:01:07
Modules and Packages
Урок 152.00:02:48
What is the Standard Library?
Урок 153.00:04:05
Importing Modules in Python
Урок 154.00:01:28
Introduction to Regression Analysis
Урок 155.00:05:51
The Linear Regression Model
Урок 156.00:01:45
Correlation vs Regression
Урок 157.00:01:26
Geometrical Representation of the Linear Regression Model
Урок 158.00:04:40
Python Packages Installation
Урок 159.00:07:12
First Regression in Python
Урок 160.00:01:22
Using Seaborn for Graphs
Урок 161.00:05:48
How to Interpret the Regression Table
Урок 162.00:03:39
Decomposition of Variability
Урок 163.00:03:14
What is the OLS?
Урок 164.00:05:31
R-Squared
Урок 165.00:02:57
Multiple Linear Regression
Урок 166.00:06:01
Adjusted R-Squared
Урок 167.00:02:02
Test for Significance of the Model (F-Test)
Урок 168.00:02:22
OLS Assumptions
Урок 169.00:01:51
A1: Linearity
Урок 170.00:04:10
A2: No Endogeneity
Урок 171.00:05:48
A3: Normality and Homoscedasticity
Урок 172.00:03:32
A4: No Autocorrelation
Урок 173.00:03:27
A5: No Multicollinearity
Урок 174.00:06:44
Dealing with Categorical Data - Dummy Variables
Урок 175.00:03:30
Making Predictions with the Linear Regression
Урок 176.00:02:15
What is sklearn and How is it Different from Other Packages
Урок 177.00:01:57
How are we Going to Approach this Section?
Урок 178.00:05:39
Simple Linear Regression with sklearn
Урок 179.00:04:50
Simple Linear Regression with sklearn - A StatsModels-like Summary Table
Урок 180.00:03:11
Multiple Linear Regression with sklearn
Урок 181.00:04:47
Calculating the Adjusted R-Squared in sklearn
Урок 182.00:04:42
Feature Selection (F-regression)
Урок 183.00:02:11
Creating a Summary Table with P-values
Урок 184.00:05:39
Feature Scaling (Standardization)
Урок 185.00:05:23
Feature Selection through Standardization of Weights
Урок 186.00:03:54
Predicting with the Standardized Coefficients
Урок 187.00:02:43
Underfitting and Overfitting
Урок 188.00:06:55
Train - Test Split Explained
Урок 189.00:12:00
Practical Example: Linear Regression (Part 1)
Урок 190.00:06:13
Practical Example: Linear Regression (Part 2)
Урок 191.00:03:17
Practical Example: Linear Regression (Part 3)
Урок 192.00:08:11
Practical Example: Linear Regression (Part 4)
Урок 193.00:07:35
Practical Example: Linear Regression (Part 5)
Урок 194.00:01:20
Introduction to Logistic Regression
Урок 195.00:04:43
A Simple Example in Python
Урок 196.00:04:01
Logistic vs Logit Function
Урок 197.00:02:49
Building a Logistic Regression
Урок 198.00:02:27
An Invaluable Coding Tip
Урок 199.00:04:07
Understanding Logistic Regression Tables
Урок 200.00:04:31
What do the Odds Actually Mean
Урок 201.00:04:33
Binary Predictors in a Logistic Regression
Урок 202.00:03:22
Calculating the Accuracy of the Model
Урок 203.00:03:44
Underfitting and Overfitting
Урок 204.00:05:06
Testing the Model
Урок 205.00:03:42
Introduction to Cluster Analysis
Урок 206.00:04:32
Some Examples of Clusters
Урок 207.00:02:33
Difference between Classification and Clustering
Урок 208.00:03:21
Math Prerequisites
Урок 209.00:04:42
K-Means Clustering
Урок 210.00:07:49
A Simple Example of Clustering
Урок 211.00:02:51
Clustering Categorical Data
Урок 212.00:06:12
How to Choose the Number of Clusters
Урок 213.00:03:24
Pros and Cons of K-Means Clustering
Урок 214.00:04:34
To Standardize or not to Standardize
Урок 215.00:01:32
Relationship between Clustering and Regression
Урок 216.00:06:05
Market Segmentation with Cluster Analysis (Part 1)
Урок 217.00:06:59
Market Segmentation with Cluster Analysis (Part 2)
Урок 218.00:04:49
How is Clustering Useful?
Урок 219.00:03:40
Types of Clustering
Урок 220.00:05:22
Dendrogram
Урок 221.00:04:35
Heatmaps
Урок 222.00:03:38
What is a Matrix?
Урок 223.00:02:59
Scalars and Vectors
Урок 224.00:03:07
Linear Algebra and Geometry
Урок 225.00:05:10
Arrays in Python - A Convenient Way To Represent Matrices
Урок 226.00:03:01
What is a Tensor?
Урок 227.00:03:37
Addition and Subtraction of Matrices
Урок 228.00:02:02
Errors when Adding Matrices
Урок 229.00:05:14
Transpose of a Matrix
Урок 230.00:03:49
Dot Product
Урок 231.00:08:24
Dot Product of Matrices
Урок 232.00:10:11
Why is Linear Algebra Useful?
Урок 233.00:03:09
What to Expect from this Part?
Урок 234.00:04:10
Introduction to Neural Networks
Урок 235.00:02:55
Training the Model
Урок 236.00:03:44
Types of Machine Learning
Урок 237.00:03:09
The Linear Model (Linear Algebraic Version)
Урок 238.00:02:26
The Linear Model with Multiple Inputs
Урок 239.00:04:27
The Linear model with Multiple Inputs and Multiple Outputs
Урок 240.00:01:48
Graphical Representation of Simple Neural Networks
Урок 241.00:01:28
What is the Objective Function?
Урок 242.00:02:05
Common Objective Functions: L2-norm Loss
Урок 243.00:03:56
Common Objective Functions: Cross-Entropy Loss
Урок 244.00:06:34
Optimization Algorithm: 1-Parameter Gradient Descent
Урок 245.00:06:09
Optimization Algorithm: n-Parameter Gradient Descent
Урок 246.00:03:07
Basic NN Example (Part 1)
Урок 247.00:05:00
Basic NN Example (Part 2)
Урок 248.00:03:26
Basic NN Example (Part 3)
Урок 249.00:08:16
Basic NN Example (Part 4)
Урок 250.00:05:03
How to Install TensorFlow 2.0
Урок 251.00:03:29
TensorFlow Outline and Comparison with Other Libraries
Урок 252.00:02:34
TensorFlow 1 vs TensorFlow 2
Урок 253.00:00:59
A Note on TensorFlow 2 Syntax
Урок 254.00:02:35
Types of File Formats Supporting TensorFlow
Урок 255.00:05:49
Outlining the Model with TensorFlow 2
Урок 256.00:04:10
Interpreting the Result and Extracting the Weights and Bias
Урок 257.00:02:52
Customizing a TensorFlow 2 Model
Урок 258.00:01:54
What is a Layer?
Урок 259.00:02:19
What is a Deep Net?
Урок 260.00:04:59
Digging into a Deep Net
Урок 261.00:03:00
Non-Linearities and their Purpose
Урок 262.00:03:38
Activation Functions
Урок 263.00:03:25
Activation Functions: Softmax Activation
Урок 264.00:03:13
Backpropagation
Урок 265.00:03:03
Backpropagation Picture
Урок 266.00:03:52
What is Overfitting?
Урок 267.00:01:53
Underfitting and Overfitting for Classification
Урок 268.00:03:23
What is Validation?
Урок 269.00:02:31
Training, Validation, and Test Datasets
Урок 270.00:03:08
N-Fold Cross Validation
Урок 271.00:04:55
Early Stopping or When to Stop Training
Урок 272.00:02:33
What is Initialization?
Урок 273.00:02:48
Types of Simple Initializations
Урок 274.00:02:46
State-of-the-Art Method - (Xavier) Glorot Initialization
Урок 275.00:03:25
Stochastic Gradient Descent
Урок 276.00:02:03
Problems with Gradient Descent
Урок 277.00:02:31
Momentum
Урок 278.00:04:26
Learning Rate Schedules, or How to Choose the Optimal Learning Rate
Урок 279.00:01:33
Learning Rate Schedules Visualized
Урок 280.00:04:09
Adaptive Learning Rate Schedules (AdaGrad and RMSprop )
Урок 281.00:02:40
Adam (Adaptive Moment Estimation)
Урок 282.00:02:52
Preprocessing Introduction
Урок 283.00:01:18
Types of Basic Preprocessing
Урок 284.00:04:32
Standardization
Урок 285.00:02:16
Preprocessing Categorical Data
Урок 286.00:03:40
Binary and One-Hot Encoding
Урок 287.00:02:26
MNIST: The Dataset
Урок 288.00:02:45
MNIST: How to Tackle the MNIST
Урок 289.00:02:12
MNIST: Importing the Relevant Packages and Loading the Data
Урок 290.00:04:44
MNIST: Preprocess the Data - Create a Validation Set and Scale It
Урок 291.00:06:31
MNIST: Preprocess the Data - Shuffle and Batch
Урок 292.00:04:55
MNIST: Outline the Model
Урок 293.00:02:06
MNIST: Select the Loss and the Optimizer
Урок 294.00:05:39
MNIST: Learning
Урок 295.00:03:57
MNIST: Testing the Model
Урок 296.00:07:55
Business Case: Exploring the Dataset and Identifying Predictors
Урок 297.00:01:32
Business Case: Outlining the Solution
Урок 298.00:03:40
Business Case: Balancing the Dataset
Урок 299.00:11:33
Business Case: Preprocessing the Data
Урок 300.00:03:24
Business Case: Load the Preprocessed Data
Урок 301.00:04:16
Business Case: Learning and Interpreting the Result
Урок 302.00:05:02
Business Case: Setting an Early Stopping Mechanism
Урок 303.00:01:24
Business Case: Testing the Model
Урок 304.00:03:42
Summary on What You've Learned
Урок 305.00:01:48
What's Further out there in terms of Machine Learning
Урок 306.00:04:57
An overview of CNNs
Урок 307.00:02:51
An Overview of RNNs
Урок 308.00:03:53
An Overview of non-NN Approaches
Урок 309.00:02:21
How to Install TensorFlow 1
Урок 310.00:03:47
TensorFlow Intro
Урок 311.00:01:41
Actual Introduction to TensorFlow
Урок 312.00:02:39
Types of File Formats, supporting Tensors
Урок 313.00:06:06
Basic NN Example with TF: Inputs, Outputs, Targets, Weights, Biases
Урок 314.00:03:42
Basic NN Example with TF: Loss Function and Gradient Descent
Урок 315.00:06:06
Basic NN Example with TF: Model Output
Урок 316.00:02:27
MNIST: What is the MNIST Dataset?
Урок 317.00:02:49
MNIST: How to Tackle the MNIST
Урок 318.00:01:36
MNIST: Relevant Packages
Урок 319.00:06:52
MNIST: Model Outline
Урок 320.00:02:40
MNIST: Loss and Optimization Algorithm
Урок 321.00:04:19
Calculating the Accuracy of the Model
Урок 322.00:02:09
MNIST: Batching and Early Stopping
Урок 323.00:07:36
MNIST: Learning
Урок 324.00:06:12
MNIST: Results and Testing
Урок 325.00:07:56
Business Case: Getting Acquainted with the Dataset
Урок 326.00:01:58
Business Case: Outlining the Solution
Урок 327.00:03:40
The Importance of Working with a Balanced Dataset
Урок 328.00:11:36
Business Case: Preprocessing
Урок 329.00:06:38
Creating a Data Provider
Урок 330.00:05:36
Business Case: Model Outline
Урок 331.00:05:11
Business Case: Optimization
Урок 332.00:02:06
Business Case: Interpretation
Урок 333.00:02:05
Business Case: Testing the Model
Урок 334.00:03:52
Business Case: A Comment on the Homework
Урок 335.00:04:45
What are Data, Servers, Clients, Requests, and Responses
Урок 336.00:07:06
What are Data Connectivity, APIs, and Endpoints?
Урок 337.00:08:06
Taking a Closer Look at APIs
Урок 338.00:04:22
Communication between Software Products through Text Files
Урок 339.00:05:26
Software Integration - Explained
Урок 340.00:04:09
Game Plan for this Python, SQL, and Tableau Business Exercise
Урок 341.00:02:49
The Business Task
Урок 342.00:03:19
Introducing the Data Set
Урок 343.00:03:24
Importing the Absenteeism Data in Python
Урок 344.00:05:54
Checking the Content of the Data Set
Урок 345.00:03:29
Introduction to Terms with Multiple Meanings
Урок 346.00:02:18
Using a Statistical Approach towards the Solution to the Exercise
Урок 347.00:06:28
Dropping a Column from a DataFrame in Python
Урок 348.00:05:05
Analyzing the Reasons for Absence
Урок 349.00:08:38
Obtaining Dummies from a Single Feature
Урок 350.00:01:29
More on Dummy Variables: A Statistical Perspective
Урок 351.00:08:36
Classifying the Various Reasons for Absence
Урок 352.00:04:36
Using .concat() in Python
Урок 353.00:01:44
Reordering Columns in a Pandas DataFrame in Python
Урок 354.00:02:53
Creating Checkpoints while Coding in Jupyter
Урок 355.00:07:50
Analyzing the Dates from the Initial Data Set
Урок 356.00:07:01
Extracting the Month Value from the "Date" Column
Урок 357.00:03:37
Extracting the Day of the Week from the "Date" Column
Урок 358.00:03:18
Analyzing Several "Straightforward" Columns for this Exercise
Урок 359.00:04:39
Working on "Education", "Children", and "Pets"
Урок 360.00:02:00
Final Remarks of this Section
Урок 361.00:03:21
Exploring the Problem with a Machine Learning Mindset
Урок 362.00:06:33
Creating the Targets for the Logistic Regression
Урок 363.00:02:43
Selecting the Inputs for the Logistic Regression
Урок 364.00:03:27
Standardizing the Data
Урок 365.00:06:14
Splitting the Data for Training and Testing
Урок 366.00:05:40
Fitting the Model and Assessing its Accuracy
Урок 367.00:05:17
Creating a Summary Table with the Coefficients and Intercept
Урок 368.00:06:15
Interpreting the Coefficients for Our Problem
Урок 369.00:04:13
Standardizing only the Numerical Variables (Creating a Custom Scaler)
Урок 370.00:05:12
Interpreting the Coefficients of the Logistic Regression
Урок 371.00:04:03
Backward Elimination or How to Simplify Your Model
Урок 372.00:04:44
Testing the Model We Created
Урок 373.00:04:07
Saving the Model and Preparing it for Deployment
Урок 374.00:04:05
Preparing the Deployment of the Model through a Module
Урок 375.00:03:51
Deploying the 'absenteeism_module' - Part I
Урок 376.00:06:25
Deploying the 'absenteeism_module' - Part II
Урок 377.00:08:50
Analyzing Age vs Probability in Tableau
Урок 378.00:07:50
Analyzing Reasons vs Probability in Tableau
Урок 379.00:06:02
Analyzing Transportation Expense vs Probability in Tableau
Урок 380.00:09:04
Using the .format() Method
Урок 381.00:04:18
Iterating Over Range Objects
Урок 382.00:06:00
Introduction to Nested For Loops
Урок 383.00:05:38
Triple Nested For Loops
Урок 384.00:08:31
List Comprehensions
Урок 385.00:07:01
Anonymous (Lambda) Functions
Урок 386.00:08:34
Introduction to pandas Series
Урок 387.00:04:50
Working with Methods in Python - Part I
Урок 388.00:02:33
Working with Methods in Python - Part II
Урок 389.00:04:10
Parameters and Arguments in pandas
Урок 390.00:03:50
Using .unique() and .nunique()
Урок 391.00:03:59
Using .sort_values()
Урок 392.00:04:42
Introduction to pandas DataFrames - Part I
Урок 393.00:05:06
Introduction to pandas DataFrames - Part II
Урок 394.00:04:16
pandas DataFrames - Common Attributes
Урок 395.00:06:56
Data Selection in pandas DataFrames
Урок 396.00:05:57
pandas DataFrames - Indexing with .iloc[]
Урок 397.00:03:53
pandas DataFrames - Indexing with .loc[]
Урок 398.00:03:47
An Introduction to Working with Files in Python
Урок 399.00:02:53
File vs File Object, Reading vs Parsing Data
Урок 400.00:03:11
Structured, Semi-Structured and Unstructured Data
Урок 401.00:03:07
Text Files and Data Connectivity
Урок 402.00:04:51
Importing Data in Python - Principles
Урок 403.00:04:34
Plain Text Files, Flat Files and More
Урок 404.00:01:27
Text Files of Fixed Width
Урок 405.00:03:50
Common Naming Conventions
Урок 406.00:09:01
Importing Text Files - open()
Урок 407.00:04:54
Importing Text Files - with open()
Урок 408.00:05:36
Importing *.csv Files - Part I
Урок 409.00:02:38
Importing *.csv Files - Part II
Урок 410.00:05:58
Importing *.csv Files - Part III
Урок 411.00:02:36
Importing Data with index_col
Урок 412.00:10:45
Importing Data with .loadtxt() and .genfromtxt()
Урок 413.00:07:22
Importing Data - Partial Cleaning While Importing Data
Урок 414.00:05:16
Importing Data from *.json Files
Урок 415.00:03:41
An Introduction to Working with Excel Files in Python
Урок 416.00:01:56
Working with Excel (*.xlsx) Data
Урок 417.00:05:45
Importing Data in Python - an Important Exercise
Урок 418.00:03:24
Importing Data with the .squeeze() Method
Урок 419.00:03:11
Importing Files in Jupyter
Урок 420.00:03:12
Saving Your Data with pandas
Урок 421.00:05:24
Saving Your Data with NumPy - Part I - *.npy
Урок 422.00:05:13
Saving Your Data with NumPy - Part II - *.npz
Урок 423.00:03:59
Saving Your Data with NumPy - Part III - *.csv
Урок 424.00:00:43
Working with Text Files in Python - Conclusion
As for cons, the stucture of lessons is a little mess with for expample the same overfitting lesson is met 3+ times.
All in all 4.3 / 5 from my point of view.
Won't be an expert for sure, but can refresh or learn basics