1. Урок 1.00:05:07
    A Practical Example: What You Will Learn in This Course
  2. Урок 2.00:03:35
    What Does the Course Cover
  3. Урок 3.00:05:22
    Data Science and Business Buzzwords: Why are there so Many?
  4. Урок 4.00:03:51
    What is the difference between Analysis and Analytics
  5. Урок 5.00:08:27
    Business Analytics, Data Analytics, and Data Science: An Introduction
  6. Урок 6.00:09:32
    Continuing with BI, ML, and AI
  7. Урок 7.00:04:04
    A Breakdown of our Data Science Infographic
  8. Урок 8.00:07:20
    Applying Traditional Data, Big Data, BI, Traditional Data Science and ML
  9. Урок 9.00:04:46
    The Reason Behind These Disciplines
  10. Урок 10.00:08:15
    Techniques for Working with Traditional Data
  11. Урок 11.00:01:45
    Real Life Examples of Traditional Data
  12. Урок 12.00:04:27
    Techniques for Working with Big Data
  13. Урок 13.00:01:33
    Real Life Examples of Big Data
  14. Урок 14.00:06:47
    Business Intelligence (BI) Techniques
  15. Урок 15.00:01:43
    Real Life Examples of Business Intelligence (BI)
  16. Урок 16.00:09:09
    Techniques for Working with Traditional Methods
  17. Урок 17.00:02:47
    Real Life Examples of Traditional Methods
  18. Урок 18.00:06:56
    Machine Learning (ML) Techniques
  19. Урок 19.00:08:14
    Types of Machine Learning
  20. Урок 20.00:02:12
    Real Life Examples of Machine Learning (ML)
  21. Урок 21.00:05:52
    Necessary Programming Languages and Software Used in Data Science
  22. Урок 22.00:03:30
    Finding the Job - What to Expect and What to Look for
  23. Урок 23.00:04:11
    Debunking Common Misconceptions
  24. Урок 24.00:07:10
    The Basic Probability Formula
  25. Урок 25.00:05:30
    Computing Expected Values
  26. Урок 26.00:05:01
    Frequency
  27. Урок 27.00:05:27
    Events and Their Complements
  28. Урок 28.00:01:05
    Fundamentals of Combinatorics
  29. Урок 29.00:03:22
    Permutations and How to Use Them
  30. Урок 30.00:03:36
    Simple Operations with Factorials
  31. Урок 31.00:03:00
    Solving Variations with Repetition
  32. Урок 32.00:03:49
    Solving Variations without Repetition
  33. Урок 33.00:04:52
    Solving Combinations
  34. Урок 34.00:03:27
    Symmetry of Combinations
  35. Урок 35.00:02:53
    Solving Combinations with Separate Sample Spaces
  36. Урок 36.00:03:13
    Combinatorics in Real-Life: The Lottery
  37. Урок 37.00:02:56
    A Recap of Combinatorics
  38. Урок 38.00:10:54
    A Practical Example of Combinatorics
  39. Урок 39.00:04:26
    Sets and Events
  40. Урок 40.00:03:46
    Ways Sets Can Interact
  41. Урок 41.00:02:07
    Intersection of Sets
  42. Урок 42.00:04:52
    Union of Sets
  43. Урок 43.00:02:10
    Mutually Exclusive Sets
  44. Урок 44.00:03:02
    Dependence and Independence of Sets
  45. Урок 45.00:04:17
    The Conditional Probability Formula
  46. Урок 46.00:03:04
    The Law of Total Probability
  47. Урок 47.00:02:22
    The Additive Rule
  48. Урок 48.00:04:06
    The Multiplication Law
  49. Урок 49.00:05:45
    Bayes' Law
  50. Урок 50.00:14:53
    A Practical Example of Bayesian Inference
  51. Урок 51.00:06:30
    Fundamentals of Probability Distributions
  52. Урок 52.00:07:33
    Types of Probability Distributions
  53. Урок 53.00:02:01
    Characteristics of Discrete Distributions
  54. Урок 54.00:02:14
    Discrete Distributions: The Uniform Distribution
  55. Урок 55.00:03:28
    Discrete Distributions: The Bernoulli Distribution
  56. Урок 56.00:07:05
    Discrete Distributions: The Binomial Distribution
  57. Урок 57.00:05:28
    Discrete Distributions: The Poisson Distribution
  58. Урок 58.00:07:13
    Characteristics of Continuous Distributions
  59. Урок 59.00:04:09
    Continuous Distributions: The Normal Distribution
  60. Урок 60.00:04:26
    Continuous Distributions: The Standard Normal Distribution
  61. Урок 61.00:02:30
    Continuous Distributions: The Students' T Distribution
  62. Урок 62.00:02:23
    Continuous Distributions: The Chi-Squared Distribution
  63. Урок 63.00:03:16
    Continuous Distributions: The Exponential Distribution
  64. Урок 64.00:04:08
    Continuous Distributions: The Logistic Distribution
  65. Урок 65.00:15:04
    A Practical Example of Probability Distributions
  66. Урок 66.00:07:47
    Probability in Finance
  67. Урок 67.00:06:19
    Probability in Statistics
  68. Урок 68.00:04:48
    Probability in Data Science
  69. Урок 69.00:04:03
    Population and Sample
  70. Урок 70.00:04:34
    Types of Data
  71. Урок 71.00:03:44
    Levels of Measurement
  72. Урок 72.00:04:53
    Categorical Variables - Visualization Techniques
  73. Урок 73.00:03:10
    Numerical Variables - Frequency Distribution Table
  74. Урок 74.00:02:15
    The Histogram
  75. Урок 75.00:04:45
    Cross Tables and Scatter Plots
  76. Урок 76.00:04:21
    Mean, median and mode
  77. Урок 77.00:02:38
    Skewness
  78. Урок 78.00:05:56
    Variance
  79. Урок 79.00:04:41
    Standard Deviation and Coefficient of Variation
  80. Урок 80.00:03:24
    Covariance
  81. Урок 81.00:03:18
    Correlation Coefficient
  82. Урок 82.00:16:17
    Practical Example: Descriptive Statistics
  83. Урок 83.00:01:02
    Introduction
  84. Урок 84.00:04:34
    What is a Distribution
  85. Урок 85.00:03:55
    The Normal Distribution
  86. Урок 86.00:03:32
    The Standard Normal Distribution
  87. Урок 87.00:04:21
    Central Limit Theorem
  88. Урок 88.00:01:28
    Standard error
  89. Урок 89.00:03:08
    Estimators and Estimates
  90. Урок 90.00:02:42
    What are Confidence Intervals?
  91. Урок 91.00:08:02
    Confidence Intervals; Population Variance Known; Z-score
  92. Урок 92.00:04:39
    Confidence Interval Clarifications
  93. Урок 93.00:03:24
    Student's T Distribution
  94. Урок 94.00:04:37
    Confidence Intervals; Population Variance Unknown; T-score
  95. Урок 95.00:04:54
    Margin of Error
  96. Урок 96.00:06:05
    Confidence intervals. Two means. Dependent samples
  97. Урок 97.00:04:32
    Confidence intervals. Two means. Independent Samples (Part 1)
  98. Урок 98.00:03:58
    Confidence intervals. Two means. Independent Samples (Part 2)
  99. Урок 99.00:01:28
    Confidence intervals. Two means. Independent Samples (Part 3)
  100. Урок 100.00:10:07
    Practical Example: Inferential Statistics
  101. Урок 101.00:05:53
    Null vs Alternative Hypothesis
  102. Урок 102.00:07:06
    Rejection Region and Significance Level
  103. Урок 103.00:04:15
    Type I Error and Type II Error
  104. Урок 104.00:06:35
    Test for the Mean. Population Variance Known
  105. Урок 105.00:04:14
    p-value
  106. Урок 106.00:04:50
    Test for the Mean. Population Variance Unknown
  107. Урок 107.00:05:19
    Test for the Mean. Dependent Samples
  108. Урок 108.00:04:23
    Test for the mean. Independent Samples (Part 1)
  109. Урок 109.00:04:27
    Test for the mean. Independent Samples (Part 2)
  110. Урок 110.00:07:17
    Practical Example: Hypothesis Testing
  111. Урок 111.00:05:05
    Introduction to Programming
  112. Урок 112.00:05:12
    Why Python?
  113. Урок 113.00:03:30
    Why Jupyter?
  114. Урок 114.00:06:50
    Installing Python and Jupyter
  115. Урок 115.00:03:16
    Understanding Jupyter's Interface - the Notebook Dashboard
  116. Урок 116.00:06:16
    Prerequisites for Coding in the Jupyter Notebooks
  117. Урок 117.00:03:38
    Variables
  118. Урок 118.00:03:06
    Numbers and Boolean Values in Python
  119. Урок 119.00:05:41
    Python Strings
  120. Урок 120.00:03:24
    Using Arithmetic Operators in Python
  121. Урок 121.00:01:34
    The Double Equality Sign
  122. Урок 122.00:01:09
    How to Reassign Values
  123. Урок 123.00:01:35
    Add Comments
  124. Урок 124.00:00:50
    Understanding Line Continuation
  125. Урок 125.00:01:19
    Indexing Elements
  126. Урок 126.00:01:45
    Structuring with Indentation
  127. Урок 127.00:02:11
    Comparison Operators
  128. Урок 128.00:05:37
    Logical and Identity Operators
  129. Урок 129.00:03:02
    The IF Statement
  130. Урок 130.00:02:46
    The ELSE Statement
  131. Урок 131.00:05:35
    The ELIF Statement
  132. Урок 132.00:02:15
    A Note on Boolean Values
  133. Урок 133.00:02:03
    Defining a Function in Python
  134. Урок 134.00:03:50
    How to Create a Function with a Parameter
  135. Урок 135.00:02:37
    Defining a Function in Python - Part II
  136. Урок 136.00:01:50
    How to Use a Function within a Function
  137. Урок 137.00:03:07
    Conditional Statements and Functions
  138. Урок 138.00:01:18
    Functions Containing a Few Arguments
  139. Урок 139.00:03:57
    Built-in Functions in Python
  140. Урок 140.00:08:19
    Lists
  141. Урок 141.00:04:32
    List Slicing
  142. Урок 142.00:06:41
    Tuples
  143. Урок 143.00:08:28
    Dictionaries
  144. Урок 144.00:05:41
    For Loops
  145. Урок 145.00:05:11
    While Loops and Incrementing
  146. Урок 146.00:06:23
    Lists with the range() Function
  147. Урок 147.00:06:31
    Conditional Statements and Loops
  148. Урок 148.00:02:28
    Conditional Statements, Functions, and Loops
  149. Урок 149.00:06:22
    How to Iterate over Dictionaries
  150. Урок 150.00:05:01
    Object Oriented Programming
  151. Урок 151.00:01:07
    Modules and Packages
  152. Урок 152.00:02:48
    What is the Standard Library?
  153. Урок 153.00:04:05
    Importing Modules in Python
  154. Урок 154.00:01:28
    Introduction to Regression Analysis
  155. Урок 155.00:05:51
    The Linear Regression Model
  156. Урок 156.00:01:45
    Correlation vs Regression
  157. Урок 157.00:01:26
    Geometrical Representation of the Linear Regression Model
  158. Урок 158.00:04:40
    Python Packages Installation
  159. Урок 159.00:07:12
    First Regression in Python
  160. Урок 160.00:01:22
    Using Seaborn for Graphs
  161. Урок 161.00:05:48
    How to Interpret the Regression Table
  162. Урок 162.00:03:39
    Decomposition of Variability
  163. Урок 163.00:03:14
    What is the OLS?
  164. Урок 164.00:05:31
    R-Squared
  165. Урок 165.00:02:57
    Multiple Linear Regression
  166. Урок 166.00:06:01
    Adjusted R-Squared
  167. Урок 167.00:02:02
    Test for Significance of the Model (F-Test)
  168. Урок 168.00:02:22
    OLS Assumptions
  169. Урок 169.00:01:51
    A1: Linearity
  170. Урок 170.00:04:10
    A2: No Endogeneity
  171. Урок 171.00:05:48
    A3: Normality and Homoscedasticity
  172. Урок 172.00:03:32
    A4: No Autocorrelation
  173. Урок 173.00:03:27
    A5: No Multicollinearity
  174. Урок 174.00:06:44
    Dealing with Categorical Data - Dummy Variables
  175. Урок 175.00:03:30
    Making Predictions with the Linear Regression
  176. Урок 176.00:02:15
    What is sklearn and How is it Different from Other Packages
  177. Урок 177.00:01:57
    How are we Going to Approach this Section?
  178. Урок 178.00:05:39
    Simple Linear Regression with sklearn
  179. Урок 179.00:04:50
    Simple Linear Regression with sklearn - A StatsModels-like Summary Table
  180. Урок 180.00:03:11
    Multiple Linear Regression with sklearn
  181. Урок 181.00:04:47
    Calculating the Adjusted R-Squared in sklearn
  182. Урок 182.00:04:42
    Feature Selection (F-regression)
  183. Урок 183.00:02:11
    Creating a Summary Table with P-values
  184. Урок 184.00:05:39
    Feature Scaling (Standardization)
  185. Урок 185.00:05:23
    Feature Selection through Standardization of Weights
  186. Урок 186.00:03:54
    Predicting with the Standardized Coefficients
  187. Урок 187.00:02:43
    Underfitting and Overfitting
  188. Урок 188.00:06:55
    Train - Test Split Explained
  189. Урок 189.00:12:00
    Practical Example: Linear Regression (Part 1)
  190. Урок 190.00:06:13
    Practical Example: Linear Regression (Part 2)
  191. Урок 191.00:03:17
    Practical Example: Linear Regression (Part 3)
  192. Урок 192.00:08:11
    Practical Example: Linear Regression (Part 4)
  193. Урок 193.00:07:35
    Practical Example: Linear Regression (Part 5)
  194. Урок 194.00:01:20
    Introduction to Logistic Regression
  195. Урок 195.00:04:43
    A Simple Example in Python
  196. Урок 196.00:04:01
    Logistic vs Logit Function
  197. Урок 197.00:02:49
    Building a Logistic Regression
  198. Урок 198.00:02:27
    An Invaluable Coding Tip
  199. Урок 199.00:04:07
    Understanding Logistic Regression Tables
  200. Урок 200.00:04:31
    What do the Odds Actually Mean
  201. Урок 201.00:04:33
    Binary Predictors in a Logistic Regression
  202. Урок 202.00:03:22
    Calculating the Accuracy of the Model
  203. Урок 203.00:03:44
    Underfitting and Overfitting
  204. Урок 204.00:05:06
    Testing the Model
  205. Урок 205.00:03:42
    Introduction to Cluster Analysis
  206. Урок 206.00:04:32
    Some Examples of Clusters
  207. Урок 207.00:02:33
    Difference between Classification and Clustering
  208. Урок 208.00:03:21
    Math Prerequisites
  209. Урок 209.00:04:42
    K-Means Clustering
  210. Урок 210.00:07:49
    A Simple Example of Clustering
  211. Урок 211.00:02:51
    Clustering Categorical Data
  212. Урок 212.00:06:12
    How to Choose the Number of Clusters
  213. Урок 213.00:03:24
    Pros and Cons of K-Means Clustering
  214. Урок 214.00:04:34
    To Standardize or not to Standardize
  215. Урок 215.00:01:32
    Relationship between Clustering and Regression
  216. Урок 216.00:06:05
    Market Segmentation with Cluster Analysis (Part 1)
  217. Урок 217.00:06:59
    Market Segmentation with Cluster Analysis (Part 2)
  218. Урок 218.00:04:49
    How is Clustering Useful?
  219. Урок 219.00:03:40
    Types of Clustering
  220. Урок 220.00:05:22
    Dendrogram
  221. Урок 221.00:04:35
    Heatmaps
  222. Урок 222.00:03:38
    What is a Matrix?
  223. Урок 223.00:02:59
    Scalars and Vectors
  224. Урок 224.00:03:07
    Linear Algebra and Geometry
  225. Урок 225.00:05:10
    Arrays in Python - A Convenient Way To Represent Matrices
  226. Урок 226.00:03:01
    What is a Tensor?
  227. Урок 227.00:03:37
    Addition and Subtraction of Matrices
  228. Урок 228.00:02:02
    Errors when Adding Matrices
  229. Урок 229.00:05:14
    Transpose of a Matrix
  230. Урок 230.00:03:49
    Dot Product
  231. Урок 231.00:08:24
    Dot Product of Matrices
  232. Урок 232.00:10:11
    Why is Linear Algebra Useful?
  233. Урок 233.00:03:09
    What to Expect from this Part?
  234. Урок 234.00:04:10
    Introduction to Neural Networks
  235. Урок 235.00:02:55
    Training the Model
  236. Урок 236.00:03:44
    Types of Machine Learning
  237. Урок 237.00:03:09
    The Linear Model (Linear Algebraic Version)
  238. Урок 238.00:02:26
    The Linear Model with Multiple Inputs
  239. Урок 239.00:04:27
    The Linear model with Multiple Inputs and Multiple Outputs
  240. Урок 240.00:01:48
    Graphical Representation of Simple Neural Networks
  241. Урок 241.00:01:28
    What is the Objective Function?
  242. Урок 242.00:02:05
    Common Objective Functions: L2-norm Loss
  243. Урок 243.00:03:56
    Common Objective Functions: Cross-Entropy Loss
  244. Урок 244.00:06:34
    Optimization Algorithm: 1-Parameter Gradient Descent
  245. Урок 245.00:06:09
    Optimization Algorithm: n-Parameter Gradient Descent
  246. Урок 246.00:03:07
    Basic NN Example (Part 1)
  247. Урок 247.00:05:00
    Basic NN Example (Part 2)
  248. Урок 248.00:03:26
    Basic NN Example (Part 3)
  249. Урок 249.00:08:16
    Basic NN Example (Part 4)
  250. Урок 250.00:05:03
    How to Install TensorFlow 2.0
  251. Урок 251.00:03:29
    TensorFlow Outline and Comparison with Other Libraries
  252. Урок 252.00:02:34
    TensorFlow 1 vs TensorFlow 2
  253. Урок 253.00:00:59
    A Note on TensorFlow 2 Syntax
  254. Урок 254.00:02:35
    Types of File Formats Supporting TensorFlow
  255. Урок 255.00:05:49
    Outlining the Model with TensorFlow 2
  256. Урок 256.00:04:10
    Interpreting the Result and Extracting the Weights and Bias
  257. Урок 257.00:02:52
    Customizing a TensorFlow 2 Model
  258. Урок 258.00:01:54
    What is a Layer?
  259. Урок 259.00:02:19
    What is a Deep Net?
  260. Урок 260.00:04:59
    Digging into a Deep Net
  261. Урок 261.00:03:00
    Non-Linearities and their Purpose
  262. Урок 262.00:03:38
    Activation Functions
  263. Урок 263.00:03:25
    Activation Functions: Softmax Activation
  264. Урок 264.00:03:13
    Backpropagation
  265. Урок 265.00:03:03
    Backpropagation Picture
  266. Урок 266.00:03:52
    What is Overfitting?
  267. Урок 267.00:01:53
    Underfitting and Overfitting for Classification
  268. Урок 268.00:03:23
    What is Validation?
  269. Урок 269.00:02:31
    Training, Validation, and Test Datasets
  270. Урок 270.00:03:08
    N-Fold Cross Validation
  271. Урок 271.00:04:55
    Early Stopping or When to Stop Training
  272. Урок 272.00:02:33
    What is Initialization?
  273. Урок 273.00:02:48
    Types of Simple Initializations
  274. Урок 274.00:02:46
    State-of-the-Art Method - (Xavier) Glorot Initialization
  275. Урок 275.00:03:25
    Stochastic Gradient Descent
  276. Урок 276.00:02:03
    Problems with Gradient Descent
  277. Урок 277.00:02:31
    Momentum
  278. Урок 278.00:04:26
    Learning Rate Schedules, or How to Choose the Optimal Learning Rate
  279. Урок 279.00:01:33
    Learning Rate Schedules Visualized
  280. Урок 280.00:04:09
    Adaptive Learning Rate Schedules (AdaGrad and RMSprop )
  281. Урок 281.00:02:40
    Adam (Adaptive Moment Estimation)
  282. Урок 282.00:02:52
    Preprocessing Introduction
  283. Урок 283.00:01:18
    Types of Basic Preprocessing
  284. Урок 284.00:04:32
    Standardization
  285. Урок 285.00:02:16
    Preprocessing Categorical Data
  286. Урок 286.00:03:40
    Binary and One-Hot Encoding
  287. Урок 287.00:02:26
    MNIST: The Dataset
  288. Урок 288.00:02:45
    MNIST: How to Tackle the MNIST
  289. Урок 289.00:02:12
    MNIST: Importing the Relevant Packages and Loading the Data
  290. Урок 290.00:04:44
    MNIST: Preprocess the Data - Create a Validation Set and Scale It
  291. Урок 291.00:06:31
    MNIST: Preprocess the Data - Shuffle and Batch
  292. Урок 292.00:04:55
    MNIST: Outline the Model
  293. Урок 293.00:02:06
    MNIST: Select the Loss and the Optimizer
  294. Урок 294.00:05:39
    MNIST: Learning
  295. Урок 295.00:03:57
    MNIST: Testing the Model
  296. Урок 296.00:07:55
    Business Case: Exploring the Dataset and Identifying Predictors
  297. Урок 297.00:01:32
    Business Case: Outlining the Solution
  298. Урок 298.00:03:40
    Business Case: Balancing the Dataset
  299. Урок 299.00:11:33
    Business Case: Preprocessing the Data
  300. Урок 300.00:03:24
    Business Case: Load the Preprocessed Data
  301. Урок 301.00:04:16
    Business Case: Learning and Interpreting the Result
  302. Урок 302.00:05:02
    Business Case: Setting an Early Stopping Mechanism
  303. Урок 303.00:01:24
    Business Case: Testing the Model
  304. Урок 304.00:03:42
    Summary on What You've Learned
  305. Урок 305.00:01:48
    What's Further out there in terms of Machine Learning
  306. Урок 306.00:04:57
    An overview of CNNs
  307. Урок 307.00:02:51
    An Overview of RNNs
  308. Урок 308.00:03:53
    An Overview of non-NN Approaches
  309. Урок 309.00:02:21
    How to Install TensorFlow 1
  310. Урок 310.00:03:47
    TensorFlow Intro
  311. Урок 311.00:01:41
    Actual Introduction to TensorFlow
  312. Урок 312.00:02:39
    Types of File Formats, supporting Tensors
  313. Урок 313.00:06:06
    Basic NN Example with TF: Inputs, Outputs, Targets, Weights, Biases
  314. Урок 314.00:03:42
    Basic NN Example with TF: Loss Function and Gradient Descent
  315. Урок 315.00:06:06
    Basic NN Example with TF: Model Output
  316. Урок 316.00:02:27
    MNIST: What is the MNIST Dataset?
  317. Урок 317.00:02:49
    MNIST: How to Tackle the MNIST
  318. Урок 318.00:01:36
    MNIST: Relevant Packages
  319. Урок 319.00:06:52
    MNIST: Model Outline
  320. Урок 320.00:02:40
    MNIST: Loss and Optimization Algorithm
  321. Урок 321.00:04:19
    Calculating the Accuracy of the Model
  322. Урок 322.00:02:09
    MNIST: Batching and Early Stopping
  323. Урок 323.00:07:36
    MNIST: Learning
  324. Урок 324.00:06:12
    MNIST: Results and Testing
  325. Урок 325.00:07:56
    Business Case: Getting Acquainted with the Dataset
  326. Урок 326.00:01:58
    Business Case: Outlining the Solution
  327. Урок 327.00:03:40
    The Importance of Working with a Balanced Dataset
  328. Урок 328.00:11:36
    Business Case: Preprocessing
  329. Урок 329.00:06:38
    Creating a Data Provider
  330. Урок 330.00:05:36
    Business Case: Model Outline
  331. Урок 331.00:05:11
    Business Case: Optimization
  332. Урок 332.00:02:06
    Business Case: Interpretation
  333. Урок 333.00:02:05
    Business Case: Testing the Model
  334. Урок 334.00:03:52
    Business Case: A Comment on the Homework
  335. Урок 335.00:04:45
    What are Data, Servers, Clients, Requests, and Responses
  336. Урок 336.00:07:06
    What are Data Connectivity, APIs, and Endpoints?
  337. Урок 337.00:08:06
    Taking a Closer Look at APIs
  338. Урок 338.00:04:22
    Communication between Software Products through Text Files
  339. Урок 339.00:05:26
    Software Integration - Explained
  340. Урок 340.00:04:09
    Game Plan for this Python, SQL, and Tableau Business Exercise
  341. Урок 341.00:02:49
    The Business Task
  342. Урок 342.00:03:19
    Introducing the Data Set
  343. Урок 343.00:03:24
    Importing the Absenteeism Data in Python
  344. Урок 344.00:05:54
    Checking the Content of the Data Set
  345. Урок 345.00:03:29
    Introduction to Terms with Multiple Meanings
  346. Урок 346.00:02:18
    Using a Statistical Approach towards the Solution to the Exercise
  347. Урок 347.00:06:28
    Dropping a Column from a DataFrame in Python
  348. Урок 348.00:05:05
    Analyzing the Reasons for Absence
  349. Урок 349.00:08:38
    Obtaining Dummies from a Single Feature
  350. Урок 350.00:01:29
    More on Dummy Variables: A Statistical Perspective
  351. Урок 351.00:08:36
    Classifying the Various Reasons for Absence
  352. Урок 352.00:04:36
    Using .concat() in Python
  353. Урок 353.00:01:44
    Reordering Columns in a Pandas DataFrame in Python
  354. Урок 354.00:02:53
    Creating Checkpoints while Coding in Jupyter
  355. Урок 355.00:07:50
    Analyzing the Dates from the Initial Data Set
  356. Урок 356.00:07:01
    Extracting the Month Value from the "Date" Column
  357. Урок 357.00:03:37
    Extracting the Day of the Week from the "Date" Column
  358. Урок 358.00:03:18
    Analyzing Several "Straightforward" Columns for this Exercise
  359. Урок 359.00:04:39
    Working on "Education", "Children", and "Pets"
  360. Урок 360.00:02:00
    Final Remarks of this Section
  361. Урок 361.00:03:21
    Exploring the Problem with a Machine Learning Mindset
  362. Урок 362.00:06:33
    Creating the Targets for the Logistic Regression
  363. Урок 363.00:02:43
    Selecting the Inputs for the Logistic Regression
  364. Урок 364.00:03:27
    Standardizing the Data
  365. Урок 365.00:06:14
    Splitting the Data for Training and Testing
  366. Урок 366.00:05:40
    Fitting the Model and Assessing its Accuracy
  367. Урок 367.00:05:17
    Creating a Summary Table with the Coefficients and Intercept
  368. Урок 368.00:06:15
    Interpreting the Coefficients for Our Problem
  369. Урок 369.00:04:13
    Standardizing only the Numerical Variables (Creating a Custom Scaler)
  370. Урок 370.00:05:12
    Interpreting the Coefficients of the Logistic Regression
  371. Урок 371.00:04:03
    Backward Elimination or How to Simplify Your Model
  372. Урок 372.00:04:44
    Testing the Model We Created
  373. Урок 373.00:04:07
    Saving the Model and Preparing it for Deployment
  374. Урок 374.00:04:05
    Preparing the Deployment of the Model through a Module
  375. Урок 375.00:03:51
    Deploying the 'absenteeism_module' - Part I
  376. Урок 376.00:06:25
    Deploying the 'absenteeism_module' - Part II
  377. Урок 377.00:08:50
    Analyzing Age vs Probability in Tableau
  378. Урок 378.00:07:50
    Analyzing Reasons vs Probability in Tableau
  379. Урок 379.00:06:02
    Analyzing Transportation Expense vs Probability in Tableau
  380. Урок 380.00:09:04
    Using the .format() Method
  381. Урок 381.00:04:18
    Iterating Over Range Objects
  382. Урок 382.00:06:00
    Introduction to Nested For Loops
  383. Урок 383.00:05:38
    Triple Nested For Loops
  384. Урок 384.00:08:31
    List Comprehensions
  385. Урок 385.00:07:01
    Anonymous (Lambda) Functions
  386. Урок 386.00:08:34
    Introduction to pandas Series
  387. Урок 387.00:04:50
    Working with Methods in Python - Part I
  388. Урок 388.00:02:33
    Working with Methods in Python - Part II
  389. Урок 389.00:04:10
    Parameters and Arguments in pandas
  390. Урок 390.00:03:50
    Using .unique() and .nunique()
  391. Урок 391.00:03:59
    Using .sort_values()
  392. Урок 392.00:04:42
    Introduction to pandas DataFrames - Part I
  393. Урок 393.00:05:06
    Introduction to pandas DataFrames - Part II
  394. Урок 394.00:04:16
    pandas DataFrames - Common Attributes
  395. Урок 395.00:06:56
    Data Selection in pandas DataFrames
  396. Урок 396.00:05:57
    pandas DataFrames - Indexing with .iloc[]
  397. Урок 397.00:03:53
    pandas DataFrames - Indexing with .loc[]
  398. Урок 398.00:03:47
    An Introduction to Working with Files in Python
  399. Урок 399.00:02:53
    File vs File Object, Reading vs Parsing Data
  400. Урок 400.00:03:11
    Structured, Semi-Structured and Unstructured Data
  401. Урок 401.00:03:07
    Text Files and Data Connectivity
  402. Урок 402.00:04:51
    Importing Data in Python - Principles
  403. Урок 403.00:04:34
    Plain Text Files, Flat Files and More
  404. Урок 404.00:01:27
    Text Files of Fixed Width
  405. Урок 405.00:03:50
    Common Naming Conventions
  406. Урок 406.00:09:01
    Importing Text Files - open()
  407. Урок 407.00:04:54
    Importing Text Files - with open()
  408. Урок 408.00:05:36
    Importing *.csv Files - Part I
  409. Урок 409.00:02:38
    Importing *.csv Files - Part II
  410. Урок 410.00:05:58
    Importing *.csv Files - Part III
  411. Урок 411.00:02:36
    Importing Data with index_col
  412. Урок 412.00:10:45
    Importing Data with .loadtxt() and .genfromtxt()
  413. Урок 413.00:07:22
    Importing Data - Partial Cleaning While Importing Data
  414. Урок 414.00:05:16
    Importing Data from *.json Files
  415. Урок 415.00:03:41
    An Introduction to Working with Excel Files in Python
  416. Урок 416.00:01:56
    Working with Excel (*.xlsx) Data
  417. Урок 417.00:05:45
    Importing Data in Python - an Important Exercise
  418. Урок 418.00:03:24
    Importing Data with the .squeeze() Method
  419. Урок 419.00:03:11
    Importing Files in Jupyter
  420. Урок 420.00:03:12
    Saving Your Data with pandas
  421. Урок 421.00:05:24
    Saving Your Data with NumPy - Part I - *.npy
  422. Урок 422.00:05:13
    Saving Your Data with NumPy - Part II - *.npz
  423. Урок 423.00:03:59
    Saving Your Data with NumPy - Part III - *.csv
  424. Урок 424.00:00:43
    Working with Text Files in Python - Conclusion