-
Урок 1.
00:05:07
A Practical Example: What You Will Learn in This Course
-
Урок 2.
00:03:35
What Does the Course Cover
-
Урок 3.
00:05:22
Data Science and Business Buzzwords: Why are there so Many?
-
Урок 4.
00:03:51
What is the difference between Analysis and Analytics
-
Урок 5.
00:08:27
Business Analytics, Data Analytics, and Data Science: An Introduction
-
Урок 6.
00:09:32
Continuing with BI, ML, and AI
-
Урок 7.
00:04:04
A Breakdown of our Data Science Infographic
-
Урок 8.
00:07:20
Applying Traditional Data, Big Data, BI, Traditional Data Science and ML
-
Урок 9.
00:04:46
The Reason Behind These Disciplines
-
Урок 10.
00:08:15
Techniques for Working with Traditional Data
-
Урок 11.
00:01:45
Real Life Examples of Traditional Data
-
Урок 12.
00:04:27
Techniques for Working with Big Data
-
Урок 13.
00:01:33
Real Life Examples of Big Data
-
Урок 14.
00:06:47
Business Intelligence (BI) Techniques
-
Урок 15.
00:01:43
Real Life Examples of Business Intelligence (BI)
-
Урок 16.
00:09:09
Techniques for Working with Traditional Methods
-
Урок 17.
00:02:47
Real Life Examples of Traditional Methods
-
Урок 18.
00:06:56
Machine Learning (ML) Techniques
-
Урок 19.
00:08:14
Types of Machine Learning
-
Урок 20.
00:02:12
Real Life Examples of Machine Learning (ML)
-
Урок 21.
00:05:52
Necessary Programming Languages and Software Used in Data Science
-
Урок 22.
00:03:30
Finding the Job - What to Expect and What to Look for
-
Урок 23.
00:04:11
Debunking Common Misconceptions
-
Урок 24.
00:07:10
The Basic Probability Formula
-
Урок 25.
00:05:30
Computing Expected Values
-
Урок 26.
00:05:01
Frequency
-
Урок 27.
00:05:27
Events and Their Complements
-
Урок 28.
00:01:05
Fundamentals of Combinatorics
-
Урок 29.
00:03:22
Permutations and How to Use Them
-
Урок 30.
00:03:36
Simple Operations with Factorials
-
Урок 31.
00:03:00
Solving Variations with Repetition
-
Урок 32.
00:03:49
Solving Variations without Repetition
-
Урок 33.
00:04:52
Solving Combinations
-
Урок 34.
00:03:27
Symmetry of Combinations
-
Урок 35.
00:02:53
Solving Combinations with Separate Sample Spaces
-
Урок 36.
00:03:13
Combinatorics in Real-Life: The Lottery
-
Урок 37.
00:02:56
A Recap of Combinatorics
-
Урок 38.
00:10:54
A Practical Example of Combinatorics
-
Урок 39.
00:04:26
Sets and Events
-
Урок 40.
00:03:46
Ways Sets Can Interact
-
Урок 41.
00:02:07
Intersection of Sets
-
Урок 42.
00:04:52
Union of Sets
-
Урок 43.
00:02:10
Mutually Exclusive Sets
-
Урок 44.
00:03:02
Dependence and Independence of Sets
-
Урок 45.
00:04:17
The Conditional Probability Formula
-
Урок 46.
00:03:04
The Law of Total Probability
-
Урок 47.
00:02:22
The Additive Rule
-
Урок 48.
00:04:06
The Multiplication Law
-
Урок 49.
00:05:45
Bayes' Law
-
Урок 50.
00:14:53
A Practical Example of Bayesian Inference
-
Урок 51.
00:06:30
Fundamentals of Probability Distributions
-
Урок 52.
00:07:33
Types of Probability Distributions
-
Урок 53.
00:02:01
Characteristics of Discrete Distributions
-
Урок 54.
00:02:14
Discrete Distributions: The Uniform Distribution
-
Урок 55.
00:03:28
Discrete Distributions: The Bernoulli Distribution
-
Урок 56.
00:07:05
Discrete Distributions: The Binomial Distribution
-
Урок 57.
00:05:28
Discrete Distributions: The Poisson Distribution
-
Урок 58.
00:07:13
Characteristics of Continuous Distributions
-
Урок 59.
00:04:09
Continuous Distributions: The Normal Distribution
-
Урок 60.
00:04:26
Continuous Distributions: The Standard Normal Distribution
-
Урок 61.
00:02:30
Continuous Distributions: The Students' T Distribution
-
Урок 62.
00:02:23
Continuous Distributions: The Chi-Squared Distribution
-
Урок 63.
00:03:16
Continuous Distributions: The Exponential Distribution
-
Урок 64.
00:04:08
Continuous Distributions: The Logistic Distribution
-
Урок 65.
00:15:04
A Practical Example of Probability Distributions
-
Урок 66.
00:07:47
Probability in Finance
-
Урок 67.
00:06:19
Probability in Statistics
-
Урок 68.
00:04:48
Probability in Data Science
-
Урок 69.
00:04:03
Population and Sample
-
Урок 70.
00:04:34
Types of Data
-
Урок 71.
00:03:44
Levels of Measurement
-
Урок 72.
00:04:53
Categorical Variables - Visualization Techniques
-
Урок 73.
00:03:10
Numerical Variables - Frequency Distribution Table
-
Урок 74.
00:02:15
The Histogram
-
Урок 75.
00:04:45
Cross Tables and Scatter Plots
-
Урок 76.
00:04:21
Mean, median and mode
-
Урок 77.
00:02:38
Skewness
-
Урок 78.
00:05:56
Variance
-
Урок 79.
00:04:41
Standard Deviation and Coefficient of Variation
-
Урок 80.
00:03:24
Covariance
-
Урок 81.
00:03:18
Correlation Coefficient
-
Урок 82.
00:16:17
Practical Example: Descriptive Statistics
-
Урок 83.
00:01:02
Introduction
-
Урок 84.
00:04:34
What is a Distribution
-
Урок 85.
00:03:55
The Normal Distribution
-
Урок 86.
00:03:32
The Standard Normal Distribution
-
Урок 87.
00:04:21
Central Limit Theorem
-
Урок 88.
00:01:28
Standard error
-
Урок 89.
00:03:08
Estimators and Estimates
-
Урок 90.
00:02:42
What are Confidence Intervals?
-
Урок 91.
00:08:02
Confidence Intervals; Population Variance Known; Z-score
-
Урок 92.
00:04:39
Confidence Interval Clarifications
-
Урок 93.
00:03:24
Student's T Distribution
-
Урок 94.
00:04:37
Confidence Intervals; Population Variance Unknown; T-score
-
Урок 95.
00:04:54
Margin of Error
-
Урок 96.
00:06:05
Confidence intervals. Two means. Dependent samples
-
Урок 97.
00:04:32
Confidence intervals. Two means. Independent Samples (Part 1)
-
Урок 98.
00:03:58
Confidence intervals. Two means. Independent Samples (Part 2)
-
Урок 99.
00:01:28
Confidence intervals. Two means. Independent Samples (Part 3)
-
Урок 100.
00:10:07
Practical Example: Inferential Statistics
-
Урок 101.
00:05:53
Null vs Alternative Hypothesis
-
Урок 102.
00:07:06
Rejection Region and Significance Level
-
Урок 103.
00:04:15
Type I Error and Type II Error
-
Урок 104.
00:06:35
Test for the Mean. Population Variance Known
-
Урок 105.
00:04:14
p-value
-
Урок 106.
00:04:50
Test for the Mean. Population Variance Unknown
-
Урок 107.
00:05:19
Test for the Mean. Dependent Samples
-
Урок 108.
00:04:23
Test for the mean. Independent Samples (Part 1)
-
Урок 109.
00:04:27
Test for the mean. Independent Samples (Part 2)
-
Урок 110.
00:07:17
Practical Example: Hypothesis Testing
-
Урок 111.
00:05:05
Introduction to Programming
-
Урок 112.
00:05:12
Why Python?
-
Урок 113.
00:03:30
Why Jupyter?
-
Урок 114.
00:06:50
Installing Python and Jupyter
-
Урок 115.
00:03:16
Understanding Jupyter's Interface - the Notebook Dashboard
-
Урок 116.
00:06:16
Prerequisites for Coding in the Jupyter Notebooks
-
Урок 117.
00:03:38
Variables
-
Урок 118.
00:03:06
Numbers and Boolean Values in Python
-
Урок 119.
00:05:41
Python Strings
-
Урок 120.
00:03:24
Using Arithmetic Operators in Python
-
Урок 121.
00:01:34
The Double Equality Sign
-
Урок 122.
00:01:09
How to Reassign Values
-
Урок 123.
00:01:35
Add Comments
-
Урок 124.
00:00:50
Understanding Line Continuation
-
Урок 125.
00:01:19
Indexing Elements
-
Урок 126.
00:01:45
Structuring with Indentation
-
Урок 127.
00:02:11
Comparison Operators
-
Урок 128.
00:05:37
Logical and Identity Operators
-
Урок 129.
00:03:02
The IF Statement
-
Урок 130.
00:02:46
The ELSE Statement
-
Урок 131.
00:05:35
The ELIF Statement
-
Урок 132.
00:02:15
A Note on Boolean Values
-
Урок 133.
00:02:03
Defining a Function in Python
-
Урок 134.
00:03:50
How to Create a Function with a Parameter
-
Урок 135.
00:02:37
Defining a Function in Python - Part II
-
Урок 136.
00:01:50
How to Use a Function within a Function
-
Урок 137.
00:03:07
Conditional Statements and Functions
-
Урок 138.
00:01:18
Functions Containing a Few Arguments
-
Урок 139.
00:03:57
Built-in Functions in Python
-
Урок 140.
00:08:19
Lists
-
Урок 141.
00:04:32
List Slicing
-
Урок 142.
00:06:41
Tuples
-
Урок 143.
00:08:28
Dictionaries
-
Урок 144.
00:05:41
For Loops
-
Урок 145.
00:05:11
While Loops and Incrementing
-
Урок 146.
00:06:23
Lists with the range() Function
-
Урок 147.
00:06:31
Conditional Statements and Loops
-
Урок 148.
00:02:28
Conditional Statements, Functions, and Loops
-
Урок 149.
00:06:22
How to Iterate over Dictionaries
-
Урок 150.
00:05:01
Object Oriented Programming
-
Урок 151.
00:01:07
Modules and Packages
-
Урок 152.
00:02:48
What is the Standard Library?
-
Урок 153.
00:04:05
Importing Modules in Python
-
Урок 154.
00:01:28
Introduction to Regression Analysis
-
Урок 155.
00:05:51
The Linear Regression Model
-
Урок 156.
00:01:45
Correlation vs Regression
-
Урок 157.
00:01:26
Geometrical Representation of the Linear Regression Model
-
Урок 158.
00:04:40
Python Packages Installation
-
Урок 159.
00:07:12
First Regression in Python
-
Урок 160.
00:01:22
Using Seaborn for Graphs
-
Урок 161.
00:05:48
How to Interpret the Regression Table
-
Урок 162.
00:03:39
Decomposition of Variability
-
Урок 163.
00:03:14
What is the OLS?
-
Урок 164.
00:05:31
R-Squared
-
Урок 165.
00:02:57
Multiple Linear Regression
-
Урок 166.
00:06:01
Adjusted R-Squared
-
Урок 167.
00:02:02
Test for Significance of the Model (F-Test)
-
Урок 168.
00:02:22
OLS Assumptions
-
Урок 169.
00:01:51
A1: Linearity
-
Урок 170.
00:04:10
A2: No Endogeneity
-
Урок 171.
00:05:48
A3: Normality and Homoscedasticity
-
Урок 172.
00:03:32
A4: No Autocorrelation
-
Урок 173.
00:03:27
A5: No Multicollinearity
-
Урок 174.
00:06:44
Dealing with Categorical Data - Dummy Variables
-
Урок 175.
00:03:30
Making Predictions with the Linear Regression
-
Урок 176.
00:02:15
What is sklearn and How is it Different from Other Packages
-
Урок 177.
00:01:57
How are we Going to Approach this Section?
-
Урок 178.
00:05:39
Simple Linear Regression with sklearn
-
Урок 179.
00:04:50
Simple Linear Regression with sklearn - A StatsModels-like Summary Table
-
Урок 180.
00:03:11
Multiple Linear Regression with sklearn
-
Урок 181.
00:04:47
Calculating the Adjusted R-Squared in sklearn
-
Урок 182.
00:04:42
Feature Selection (F-regression)
-
Урок 183.
00:02:11
Creating a Summary Table with P-values
-
Урок 184.
00:05:39
Feature Scaling (Standardization)
-
Урок 185.
00:05:23
Feature Selection through Standardization of Weights
-
Урок 186.
00:03:54
Predicting with the Standardized Coefficients
-
Урок 187.
00:02:43
Underfitting and Overfitting
-
Урок 188.
00:06:55
Train - Test Split Explained
-
Урок 189.
00:12:00
Practical Example: Linear Regression (Part 1)
-
Урок 190.
00:06:13
Practical Example: Linear Regression (Part 2)
-
Урок 191.
00:03:17
Practical Example: Linear Regression (Part 3)
-
Урок 192.
00:08:11
Practical Example: Linear Regression (Part 4)
-
Урок 193.
00:07:35
Practical Example: Linear Regression (Part 5)
-
Урок 194.
00:01:20
Introduction to Logistic Regression
-
Урок 195.
00:04:43
A Simple Example in Python
-
Урок 196.
00:04:01
Logistic vs Logit Function
-
Урок 197.
00:02:49
Building a Logistic Regression
-
Урок 198.
00:02:27
An Invaluable Coding Tip
-
Урок 199.
00:04:07
Understanding Logistic Regression Tables
-
Урок 200.
00:04:31
What do the Odds Actually Mean
-
Урок 201.
00:04:33
Binary Predictors in a Logistic Regression
-
Урок 202.
00:03:22
Calculating the Accuracy of the Model
-
Урок 203.
00:03:44
Underfitting and Overfitting
-
Урок 204.
00:05:06
Testing the Model
-
Урок 205.
00:03:42
Introduction to Cluster Analysis
-
Урок 206.
00:04:32
Some Examples of Clusters
-
Урок 207.
00:02:33
Difference between Classification and Clustering
-
Урок 208.
00:03:21
Math Prerequisites
-
Урок 209.
00:04:42
K-Means Clustering
-
Урок 210.
00:07:49
A Simple Example of Clustering
-
Урок 211.
00:02:51
Clustering Categorical Data
-
Урок 212.
00:06:12
How to Choose the Number of Clusters
-
Урок 213.
00:03:24
Pros and Cons of K-Means Clustering
-
Урок 214.
00:04:34
To Standardize or not to Standardize
-
Урок 215.
00:01:32
Relationship between Clustering and Regression
-
Урок 216.
00:06:05
Market Segmentation with Cluster Analysis (Part 1)
-
Урок 217.
00:06:59
Market Segmentation with Cluster Analysis (Part 2)
-
Урок 218.
00:04:49
How is Clustering Useful?
-
Урок 219.
00:03:40
Types of Clustering
-
Урок 220.
00:05:22
Dendrogram
-
Урок 221.
00:04:35
Heatmaps
-
Урок 222.
00:03:38
What is a Matrix?
-
Урок 223.
00:02:59
Scalars and Vectors
-
Урок 224.
00:03:07
Linear Algebra and Geometry
-
Урок 225.
00:05:10
Arrays in Python - A Convenient Way To Represent Matrices
-
Урок 226.
00:03:01
What is a Tensor?
-
Урок 227.
00:03:37
Addition and Subtraction of Matrices
-
Урок 228.
00:02:02
Errors when Adding Matrices
-
Урок 229.
00:05:14
Transpose of a Matrix
-
Урок 230.
00:03:49
Dot Product
-
Урок 231.
00:08:24
Dot Product of Matrices
-
Урок 232.
00:10:11
Why is Linear Algebra Useful?
-
Урок 233.
00:03:09
What to Expect from this Part?
-
Урок 234.
00:04:10
Introduction to Neural Networks
-
Урок 235.
00:02:55
Training the Model
-
Урок 236.
00:03:44
Types of Machine Learning
-
Урок 237.
00:03:09
The Linear Model (Linear Algebraic Version)
-
Урок 238.
00:02:26
The Linear Model with Multiple Inputs
-
Урок 239.
00:04:27
The Linear model with Multiple Inputs and Multiple Outputs
-
Урок 240.
00:01:48
Graphical Representation of Simple Neural Networks
-
Урок 241.
00:01:28
What is the Objective Function?
-
Урок 242.
00:02:05
Common Objective Functions: L2-norm Loss
-
Урок 243.
00:03:56
Common Objective Functions: Cross-Entropy Loss
-
Урок 244.
00:06:34
Optimization Algorithm: 1-Parameter Gradient Descent
-
Урок 245.
00:06:09
Optimization Algorithm: n-Parameter Gradient Descent
-
Урок 246.
00:03:07
Basic NN Example (Part 1)
-
Урок 247.
00:05:00
Basic NN Example (Part 2)
-
Урок 248.
00:03:26
Basic NN Example (Part 3)
-
Урок 249.
00:08:16
Basic NN Example (Part 4)
-
Урок 250.
00:05:03
How to Install TensorFlow 2.0
-
Урок 251.
00:03:29
TensorFlow Outline and Comparison with Other Libraries
-
Урок 252.
00:02:34
TensorFlow 1 vs TensorFlow 2
-
Урок 253.
00:00:59
A Note on TensorFlow 2 Syntax
-
Урок 254.
00:02:35
Types of File Formats Supporting TensorFlow
-
Урок 255.
00:05:49
Outlining the Model with TensorFlow 2
-
Урок 256.
00:04:10
Interpreting the Result and Extracting the Weights and Bias
-
Урок 257.
00:02:52
Customizing a TensorFlow 2 Model
-
Урок 258.
00:01:54
What is a Layer?
-
Урок 259.
00:02:19
What is a Deep Net?
-
Урок 260.
00:04:59
Digging into a Deep Net
-
Урок 261.
00:03:00
Non-Linearities and their Purpose
-
Урок 262.
00:03:38
Activation Functions
-
Урок 263.
00:03:25
Activation Functions: Softmax Activation
-
Урок 264.
00:03:13
Backpropagation
-
Урок 265.
00:03:03
Backpropagation Picture
-
Урок 266.
00:03:52
What is Overfitting?
-
Урок 267.
00:01:53
Underfitting and Overfitting for Classification
-
Урок 268.
00:03:23
What is Validation?
-
Урок 269.
00:02:31
Training, Validation, and Test Datasets
-
Урок 270.
00:03:08
N-Fold Cross Validation
-
Урок 271.
00:04:55
Early Stopping or When to Stop Training
-
Урок 272.
00:02:33
What is Initialization?
-
Урок 273.
00:02:48
Types of Simple Initializations
-
Урок 274.
00:02:46
State-of-the-Art Method - (Xavier) Glorot Initialization
-
Урок 275.
00:03:25
Stochastic Gradient Descent
-
Урок 276.
00:02:03
Problems with Gradient Descent
-
Урок 277.
00:02:31
Momentum
-
Урок 278.
00:04:26
Learning Rate Schedules, or How to Choose the Optimal Learning Rate
-
Урок 279.
00:01:33
Learning Rate Schedules Visualized
-
Урок 280.
00:04:09
Adaptive Learning Rate Schedules (AdaGrad and RMSprop )
-
Урок 281.
00:02:40
Adam (Adaptive Moment Estimation)
-
Урок 282.
00:02:52
Preprocessing Introduction
-
Урок 283.
00:01:18
Types of Basic Preprocessing
-
Урок 284.
00:04:32
Standardization
-
Урок 285.
00:02:16
Preprocessing Categorical Data
-
Урок 286.
00:03:40
Binary and One-Hot Encoding
-
Урок 287.
00:02:26
MNIST: The Dataset
-
Урок 288.
00:02:45
MNIST: How to Tackle the MNIST
-
Урок 289.
00:02:12
MNIST: Importing the Relevant Packages and Loading the Data
-
Урок 290.
00:04:44
MNIST: Preprocess the Data - Create a Validation Set and Scale It
-
Урок 291.
00:06:31
MNIST: Preprocess the Data - Shuffle and Batch
-
Урок 292.
00:04:55
MNIST: Outline the Model
-
Урок 293.
00:02:06
MNIST: Select the Loss and the Optimizer
-
Урок 294.
00:05:39
MNIST: Learning
-
Урок 295.
00:03:57
MNIST: Testing the Model
-
Урок 296.
00:07:55
Business Case: Exploring the Dataset and Identifying Predictors
-
Урок 297.
00:01:32
Business Case: Outlining the Solution
-
Урок 298.
00:03:40
Business Case: Balancing the Dataset
-
Урок 299.
00:11:33
Business Case: Preprocessing the Data
-
Урок 300.
00:03:24
Business Case: Load the Preprocessed Data
-
Урок 301.
00:04:16
Business Case: Learning and Interpreting the Result
-
Урок 302.
00:05:02
Business Case: Setting an Early Stopping Mechanism
-
Урок 303.
00:01:24
Business Case: Testing the Model
-
Урок 304.
00:03:42
Summary on What You've Learned
-
Урок 305.
00:01:48
What's Further out there in terms of Machine Learning
-
Урок 306.
00:04:57
An overview of CNNs
-
Урок 307.
00:02:51
An Overview of RNNs
-
Урок 308.
00:03:53
An Overview of non-NN Approaches
-
Урок 309.
00:02:21
How to Install TensorFlow 1
-
Урок 310.
00:03:47
TensorFlow Intro
-
Урок 311.
00:01:41
Actual Introduction to TensorFlow
-
Урок 312.
00:02:39
Types of File Formats, supporting Tensors
-
Урок 313.
00:06:06
Basic NN Example with TF: Inputs, Outputs, Targets, Weights, Biases
-
Урок 314.
00:03:42
Basic NN Example with TF: Loss Function and Gradient Descent
-
Урок 315.
00:06:06
Basic NN Example with TF: Model Output
-
Урок 316.
00:02:27
MNIST: What is the MNIST Dataset?
-
Урок 317.
00:02:49
MNIST: How to Tackle the MNIST
-
Урок 318.
00:01:36
MNIST: Relevant Packages
-
Урок 319.
00:06:52
MNIST: Model Outline
-
Урок 320.
00:02:40
MNIST: Loss and Optimization Algorithm
-
Урок 321.
00:04:19
Calculating the Accuracy of the Model
-
Урок 322.
00:02:09
MNIST: Batching and Early Stopping
-
Урок 323.
00:07:36
MNIST: Learning
-
Урок 324.
00:06:12
MNIST: Results and Testing
-
Урок 325.
00:07:56
Business Case: Getting Acquainted with the Dataset
-
Урок 326.
00:01:58
Business Case: Outlining the Solution
-
Урок 327.
00:03:40
The Importance of Working with a Balanced Dataset
-
Урок 328.
00:11:36
Business Case: Preprocessing
-
Урок 329.
00:06:38
Creating a Data Provider
-
Урок 330.
00:05:36
Business Case: Model Outline
-
Урок 331.
00:05:11
Business Case: Optimization
-
Урок 332.
00:02:06
Business Case: Interpretation
-
Урок 333.
00:02:05
Business Case: Testing the Model
-
Урок 334.
00:03:52
Business Case: A Comment on the Homework
-
Урок 335.
00:04:45
What are Data, Servers, Clients, Requests, and Responses
-
Урок 336.
00:07:06
What are Data Connectivity, APIs, and Endpoints?
-
Урок 337.
00:08:06
Taking a Closer Look at APIs
-
Урок 338.
00:04:22
Communication between Software Products through Text Files
-
Урок 339.
00:05:26
Software Integration - Explained
-
Урок 340.
00:04:09
Game Plan for this Python, SQL, and Tableau Business Exercise
-
Урок 341.
00:02:49
The Business Task
-
Урок 342.
00:03:19
Introducing the Data Set
-
Урок 343.
00:03:24
Importing the Absenteeism Data in Python
-
Урок 344.
00:05:54
Checking the Content of the Data Set
-
Урок 345.
00:03:29
Introduction to Terms with Multiple Meanings
-
Урок 346.
00:02:18
Using a Statistical Approach towards the Solution to the Exercise
-
Урок 347.
00:06:28
Dropping a Column from a DataFrame in Python
-
Урок 348.
00:05:05
Analyzing the Reasons for Absence
-
Урок 349.
00:08:38
Obtaining Dummies from a Single Feature
-
Урок 350.
00:01:29
More on Dummy Variables: A Statistical Perspective
-
Урок 351.
00:08:36
Classifying the Various Reasons for Absence
-
Урок 352.
00:04:36
Using .concat() in Python
-
Урок 353.
00:01:44
Reordering Columns in a Pandas DataFrame in Python
-
Урок 354.
00:02:53
Creating Checkpoints while Coding in Jupyter
-
Урок 355.
00:07:50
Analyzing the Dates from the Initial Data Set
-
Урок 356.
00:07:01
Extracting the Month Value from the "Date" Column
-
Урок 357.
00:03:37
Extracting the Day of the Week from the "Date" Column
-
Урок 358.
00:03:18
Analyzing Several "Straightforward" Columns for this Exercise
-
Урок 359.
00:04:39
Working on "Education", "Children", and "Pets"
-
Урок 360.
00:02:00
Final Remarks of this Section
-
Урок 361.
00:03:21
Exploring the Problem with a Machine Learning Mindset
-
Урок 362.
00:06:33
Creating the Targets for the Logistic Regression
-
Урок 363.
00:02:43
Selecting the Inputs for the Logistic Regression
-
Урок 364.
00:03:27
Standardizing the Data
-
Урок 365.
00:06:14
Splitting the Data for Training and Testing
-
Урок 366.
00:05:40
Fitting the Model and Assessing its Accuracy
-
Урок 367.
00:05:17
Creating a Summary Table with the Coefficients and Intercept
-
Урок 368.
00:06:15
Interpreting the Coefficients for Our Problem
-
Урок 369.
00:04:13
Standardizing only the Numerical Variables (Creating a Custom Scaler)
-
Урок 370.
00:05:12
Interpreting the Coefficients of the Logistic Regression
-
Урок 371.
00:04:03
Backward Elimination or How to Simplify Your Model
-
Урок 372.
00:04:44
Testing the Model We Created
-
Урок 373.
00:04:07
Saving the Model and Preparing it for Deployment
-
Урок 374.
00:04:05
Preparing the Deployment of the Model through a Module
-
Урок 375.
00:03:51
Deploying the 'absenteeism_module' - Part I
-
Урок 376.
00:06:25
Deploying the 'absenteeism_module' - Part II
-
Урок 377.
00:08:50
Analyzing Age vs Probability in Tableau
-
Урок 378.
00:07:50
Analyzing Reasons vs Probability in Tableau
-
Урок 379.
00:06:02
Analyzing Transportation Expense vs Probability in Tableau
-
Урок 380.
00:09:04
Using the .format() Method
-
Урок 381.
00:04:18
Iterating Over Range Objects
-
Урок 382.
00:06:00
Introduction to Nested For Loops
-
Урок 383.
00:05:38
Triple Nested For Loops
-
Урок 384.
00:08:31
List Comprehensions
-
Урок 385.
00:07:01
Anonymous (Lambda) Functions
-
Урок 386.
00:08:34
Introduction to pandas Series
-
Урок 387.
00:04:50
Working with Methods in Python - Part I
-
Урок 388.
00:02:33
Working with Methods in Python - Part II
-
Урок 389.
00:04:10
Parameters and Arguments in pandas
-
Урок 390.
00:03:50
Using .unique() and .nunique()
-
Урок 391.
00:03:59
Using .sort_values()
-
Урок 392.
00:04:42
Introduction to pandas DataFrames - Part I
-
Урок 393.
00:05:06
Introduction to pandas DataFrames - Part II
-
Урок 394.
00:04:16
pandas DataFrames - Common Attributes
-
Урок 395.
00:06:56
Data Selection in pandas DataFrames
-
Урок 396.
00:05:57
pandas DataFrames - Indexing with .iloc[]
-
Урок 397.
00:03:53
pandas DataFrames - Indexing with .loc[]
-
Урок 398.
00:03:47
An Introduction to Working with Files in Python
-
Урок 399.
00:02:53
File vs File Object, Reading vs Parsing Data
-
Урок 400.
00:03:11
Structured, Semi-Structured and Unstructured Data
-
Урок 401.
00:03:07
Text Files and Data Connectivity
-
Урок 402.
00:04:51
Importing Data in Python - Principles
-
Урок 403.
00:04:34
Plain Text Files, Flat Files and More
-
Урок 404.
00:01:27
Text Files of Fixed Width
-
Урок 405.
00:03:50
Common Naming Conventions
-
Урок 406.
00:09:01
Importing Text Files - open()
-
Урок 407.
00:04:54
Importing Text Files - with open()
-
Урок 408.
00:05:36
Importing *.csv Files - Part I
-
Урок 409.
00:02:38
Importing *.csv Files - Part II
-
Урок 410.
00:05:58
Importing *.csv Files - Part III
-
Урок 411.
00:02:36
Importing Data with index_col
-
Урок 412.
00:10:45
Importing Data with .loadtxt() and .genfromtxt()
-
Урок 413.
00:07:22
Importing Data - Partial Cleaning While Importing Data
-
Урок 414.
00:05:16
Importing Data from *.json Files
-
Урок 415.
00:03:41
An Introduction to Working with Excel Files in Python
-
Урок 416.
00:01:56
Working with Excel (*.xlsx) Data
-
Урок 417.
00:05:45
Importing Data in Python - an Important Exercise
-
Урок 418.
00:03:24
Importing Data with the .squeeze() Method
-
Урок 419.
00:03:11
Importing Files in Jupyter
-
Урок 420.
00:03:12
Saving Your Data with pandas
-
Урок 421.
00:05:24
Saving Your Data with NumPy - Part I - *.npy
-
Урок 422.
00:05:13
Saving Your Data with NumPy - Part II - *.npz
-
Урок 423.
00:03:59
Saving Your Data with NumPy - Part III - *.csv
-
Урок 424.
00:00:43
Working with Text Files in Python - Conclusion
As for cons, the stucture of lessons is a little mess with for expample the same overfitting lesson is met 3+ times.
All in all 4.3 / 5 from my point of view.
Won't be an expert for sure, but can refresh or learn basics