-
Урок 1.
00:04:41
What we'll learn in this course
-
Урок 2.
00:01:27
How to get the most out of this course
-
Урок 3.
00:01:25
Introduction to operations on one matrix
-
Урок 4.
00:12:16
Linear systems in two unknowns
-
Урок 5.
00:10:21
Linear systems in three unknowns
-
Урок 6.
00:06:08
Matrix dimensions and entries
-
Урок 7.
00:09:59
Representing systems with matrices
-
Урок 8.
00:10:15
Simple row operations
-
Урок 9.
00:16:19
Pivot entries and row-echelon forms
-
Урок 10.
00:13:57
Gauss-Jordan elimination
-
Урок 11.
00:13:21
Number of solutions to the linear system
-
Урок 12.
00:01:18
Introduction to operations on two matrices
-
Урок 13.
00:09:49
Matrix addition and subtraction
-
Урок 14.
00:06:06
Scalar multiplication
-
Урок 15.
00:04:07
Zero matrices
-
Урок 16.
00:11:52
Matrix multiplication
-
Урок 17.
00:09:24
Identity matrices
-
Урок 18.
00:13:20
The elimination matrix
-
Урок 19.
00:01:18
Introduction to matrices as vectors
-
Урок 20.
00:08:55
Vectors
-
Урок 21.
00:10:50
Vector operations
-
Урок 22.
00:16:11
Unit vectors and basis vectors
-
Урок 23.
00:13:29
Linear combinations and span
-
Урок 24.
00:13:56
Linear independence in two dimensions
-
Урок 25.
00:09:39
Linear independence in three dimensions
-
Урок 26.
00:13:39
Linear subspaces
-
Урок 27.
00:09:23
Spans as subspaces
-
Урок 28.
00:17:16
Basis
-
Урок 29.
00:01:12
Introduction to dot products and cross products
-
Урок 30.
00:10:36
Dot products
-
Урок 31.
00:08:06
Cauchy-Schwarz inequality
-
Урок 32.
00:10:28
Vector triangle inequality
-
Урок 33.
00:09:06
Angle between vectors
-
Урок 34.
00:09:10
Equation of a plane, and normal vectors
-
Урок 35.
00:14:24
Cross products
-
Урок 36.
00:13:39
Dot and cross products as opposite ideas
-
Урок 37.
00:01:10
Introduction to matrix-vector products
-
Урок 38.
00:08:33
Multiplying matrices by vectors
-
Урок 39.
00:20:25
The null space and Ax=O
-
Урок 40.
00:16:21
Null space of a matrix
-
Урок 41.
00:17:18
The column space and Ax=b
-
Урок 42.
00:16:47
Solving Ax=b
-
Урок 43.
00:09:41
Dimensionality, nullity, and rank
-
Урок 44.
00:01:23
Introduction to transformations
-
Урок 45.
00:12:43
Functions and transformations
-
Урок 46.
00:19:29
Transformation matrices and the image of the subset
-
Урок 47.
00:10:16
Preimage, image, and the kernel
-
Урок 48.
00:14:50
Linear transformations as matrix-vector products
-
Урок 49.
00:05:50
Linear transformations as rotations
-
Урок 50.
00:09:30
Adding and scaling linear transformations
-
Урок 51.
00:15:53
Projections as linear transformations
-
Урок 52.
00:10:01
Compositions of linear transformations
-
Урок 53.
00:01:28
Introduction to inverses
-
Урок 54.
00:14:40
Inverse of a transformation
-
Урок 55.
00:18:20
Invertibility from the matrix-vector product
-
Урок 56.
00:09:55
Inverse transformations are linear
-
Урок 57.
00:11:37
Matrix inverses, and invertible and singular matrices
-
Урок 58.
00:08:40
Solving systems with inverse matrices
-
Урок 59.
00:00:56
Introduction to determinants
-
Урок 60.
00:20:22
Determinants
-
Урок 61.
00:15:48
Cramer's rule for solving systems
-
Урок 62.
00:09:53
Modifying determinants
-
Урок 63.
00:17:00
Upper and lower triangular matrices
-
Урок 64.
00:08:29
Using determinants to find area
-
Урок 65.
00:00:59
Introduction to transposes
-
Урок 66.
00:09:15
Transposes and their determinants
-
Урок 67.
00:12:40
Transposes of products, sums, and inverses
-
Урок 68.
00:21:22
Null and column spaces of the transpose
-
Урок 69.
00:07:05
The product of a matrix and its transpose
-
Урок 70.
00:01:30
Introduction to orthogonality and change of basis
-
Урок 71.
00:15:36
Orthogonal complements
-
Урок 72.
00:15:50
Orthogonal complements of the fundamental subspaces
-
Урок 73.
00:18:37
Projection onto the subspace
-
Урок 74.
00:18:53
Least squares solution
-
Урок 75.
00:15:33
Coordinates in a new basis
-
Урок 76.
00:14:33
Transformation matrix for a basis
-
Урок 77.
00:01:10
Introduction to orthonormal bases and Gram-Schmidt
-
Урок 78.
00:09:50
Orthonormal bases
-
Урок 79.
00:09:07
Projection onto an orthonormal basis
-
Урок 80.
00:16:57
Gram-Schmidt process for change of basis
-
Урок 81.
00:00:57
Introduction to Eigenvalues and Eigenvectors
-
Урок 82.
00:21:34
Eigenvalues, eigenvectors, eigenspaces
-
Урок 83.
00:16:10
Eigen in three dimensions
-
Урок 84.
00:00:26
Wrap-up