-
Урок 1.
00:00:58
Getting Started - How to Get Help
-
Урок 2.
00:06:05
Solving Machine Learning Problems
-
Урок 3.
00:09:54
A Complete Walkthrough
-
Урок 4.
00:02:02
App Setup
-
Урок 5.
00:02:54
Problem Outline
-
Урок 6.
00:04:12
Identifying Relevant Data
-
Урок 7.
00:05:48
Dataset Structures
-
Урок 8.
00:04:00
Recording Observation Data
-
Урок 9.
00:04:36
What Type of Problem?
-
Урок 10.
00:08:24
How K-Nearest Neighbor Works
-
Урок 11.
00:09:57
Lodash Review
-
Урок 12.
00:07:17
Implementing KNN
-
Урок 13.
00:05:54
Finishing KNN Implementation
-
Урок 14.
00:04:49
Testing the Algorithm
-
Урок 15.
00:04:13
Interpreting Bad Results
-
Урок 16.
00:04:06
Test and Training Data
-
Урок 17.
00:03:49
Randomizing Test Data
-
Урок 18.
00:03:42
Generalizing KNN
-
Урок 19.
00:05:19
Gauging Accuracy
-
Урок 20.
00:03:30
Printing a Report
-
Урок 21.
00:05:14
Refactoring Accuracy Reporting
-
Урок 22.
00:11:39
Investigating Optimal K Values
-
Урок 23.
00:06:37
Updating KNN for Multiple Features
-
Урок 24.
00:03:57
Multi-Dimensional KNN
-
Урок 25.
00:09:51
N-Dimension Distance
-
Урок 26.
00:08:28
Arbitrary Feature Spaces
-
Урок 27.
00:05:37
Magnitude Offsets in Features
-
Урок 28.
00:07:33
Feature Normalization
-
Урок 29.
00:07:15
Normalization with MinMax
-
Урок 30.
00:04:23
Applying Normalization
-
Урок 31.
00:07:48
Feature Selection with KNN
-
Урок 32.
00:06:11
Objective Feature Picking
-
Урок 33.
00:02:54
Evaluating Different Feature Values
-
Урок 34.
00:07:28
Let's Get Our Bearings
-
Урок 35.
00:04:32
A Plan to Move Forward
-
Урок 36.
00:12:05
Tensor Shape and Dimension
-
Урок 37.
00:08:19
Elementwise Operations
-
Урок 38.
00:06:48
Broadcasting Operations
-
Урок 39.
00:03:48
Logging Tensor Data
-
Урок 40.
00:05:25
Tensor Accessors
-
Урок 41.
00:07:47
Creating Slices of Data
-
Урок 42.
00:05:29
Tensor Concatenation
-
Урок 43.
00:05:14
Summing Values Along an Axis
-
Урок 44.
00:07:48
Massaging Dimensions with ExpandDims
-
Урок 45.
00:04:57
KNN with Regression
-
Урок 46.
00:04:05
A Change in Data Structure
-
Урок 47.
00:09:19
KNN with Tensorflow
-
Урок 48.
00:06:31
Maintaining Order Relationships
-
Урок 49.
00:08:01
Sorting Tensors
-
Урок 50.
00:07:44
Averaging Top Values
-
Урок 51.
00:03:27
Moving to the Editor
-
Урок 52.
00:10:11
Loading CSV Data
-
Урок 53.
00:06:11
Running an Analysis
-
Урок 54.
00:06:27
Reporting Error Percentages
-
Урок 55.
00:07:34
Normalization or Standardization?
-
Урок 56.
00:07:38
Numerical Standardization with Tensorflow
-
Урок 57.
00:04:02
Applying Standardization
-
Урок 58.
00:08:15
Debugging Calculations
-
Урок 59.
00:04:01
What Now?
-
Урок 60.
00:02:40
Linear Regression
-
Урок 61.
00:04:53
Why Linear Regression?
-
Урок 62.
00:13:05
Understanding Gradient Descent
-
Урок 63.
00:10:20
Guessing Coefficients with MSE
-
Урок 64.
00:05:57
Observations Around MSE
-
Урок 65.
00:07:13
Derivatives!
-
Урок 66.
00:11:47
Gradient Descent in Action
-
Урок 67.
00:05:47
Quick Breather and Review
-
Урок 68.
00:17:06
Why a Learning Rate?
-
Урок 69.
00:03:49
Answering Common Questions
-
Урок 70.
00:04:44
Gradient Descent with Multiple Terms
-
Урок 71.
00:10:40
Multiple Terms in Action
-
Урок 72.
00:06:02
Project Overview
-
Урок 73.
00:05:18
Data Loading
-
Урок 74.
00:08:33
Default Algorithm Options
-
Урок 75.
00:03:19
Formulating the Training Loop
-
Урок 76.
00:09:25
Initial Gradient Descent Implementation
-
Урок 77.
00:06:53
Calculating MSE Slopes
-
Урок 78.
00:03:12
Updating Coefficients
-
Урок 79.
00:10:08
Interpreting Results
-
Урок 80.
00:07:10
Matrix Multiplication
-
Урок 81.
00:06:41
More on Matrix Multiplication
-
Урок 82.
00:06:22
Matrix Form of Slope Equations
-
Урок 83.
00:09:29
Simplification with Matrix Multiplication
-
Урок 84.
00:14:02
How it All Works Together!
-
Урок 85.
00:07:41
Refactoring the Linear Regression Class
-
Урок 86.
00:08:59
Refactoring to One Equation
-
Урок 87.
00:06:14
A Few More Changes
-
Урок 88.
00:03:20
Same Results? Or Not?
-
Урок 89.
00:08:38
Calculating Model Accuracy
-
Урок 90.
00:07:45
Implementing Coefficient of Determination
-
Урок 91.
00:07:48
Dealing with Bad Accuracy
-
Урок 92.
00:04:37
Reminder on Standardization
-
Урок 93.
00:03:39
Data Processing in a Helper Method
-
Урок 94.
00:05:58
Reapplying Standardization
-
Урок 95.
00:05:37
Fixing Standardization Issues
-
Урок 96.
00:03:16
Massaging Learning Rates
-
Урок 97.
00:11:45
Moving Towards Multivariate Regression
-
Урок 98.
00:07:29
Refactoring for Multivariate Analysis
-
Урок 99.
00:08:05
Learning Rate Optimization
-
Урок 100.
00:05:22
Recording MSE History
-
Урок 101.
00:06:42
Updating Learning Rate
-
Урок 102.
00:04:18
Observing Changing Learning Rate and MSE
-
Урок 103.
00:05:22
Plotting MSE Values
-
Урок 104.
00:04:23
Plotting MSE History against B Values
-
Урок 105.
00:07:18
Batch and Stochastic Gradient Descent
-
Урок 106.
00:05:07
Refactoring Towards Batch Gradient Descent
-
Урок 107.
00:06:03
Determining Batch Size and Quantity
-
Урок 108.
00:07:49
Iterating Over Batches
-
Урок 109.
00:05:42
Evaluating Batch Gradient Descent Results
-
Урок 110.
00:07:38
Making Predictions with the Model
-
Урок 111.
00:02:28
Introducing Logistic Regression
-
Урок 112.
00:06:32
Logistic Regression in Action
-
Урок 113.
00:05:32
Bad Equation Fits
-
Урок 114.
00:04:32
The Sigmoid Equation
-
Урок 115.
00:07:48
Decision Boundaries
-
Урок 116.
00:01:12
Changes for Logistic Regression
-
Урок 117.
00:05:52
Project Setup for Logistic Regression
-
Урок 118.
00:04:28
Importing Vehicle Data
-
Урок 119.
00:04:19
Encoding Label Values
-
Урок 120.
00:07:09
Updating Linear Regression for Logistic Regression
-
Урок 121.
00:04:28
The Sigmoid Equation with Logistic Regression
-
Урок 122.
00:07:47
A Touch More Refactoring
-
Урок 123.
00:03:28
Gauging Classification Accuracy
-
Урок 124.
00:05:17
Implementing a Test Function
-
Урок 125.
00:07:17
Variable Decision Boundaries
-
Урок 126.
00:05:47
Mean Squared Error vs Cross Entropy
-
Урок 127.
00:05:09
Refactoring with Cross Entropy
-
Урок 128.
00:04:37
Finishing the Cost Refactor
-
Урок 129.
00:03:25
Plotting Changing Cost History
-
Урок 130.
00:02:20
Multinominal Logistic Regression
-
Урок 131.
00:05:08
A Smart Refactor to Multinominal Analysis
-
Урок 132.
00:03:46
A Smarter Refactor!
-
Урок 133.
00:09:51
A Single Instance Approach
-
Урок 134.
00:04:40
Refactoring to Multi-Column Weights
-
Урок 135.
00:04:38
A Problem to Test Multinominal Classification
-
Урок 136.
00:04:42
Classifying Continuous Values
-
Урок 137.
00:06:20
Training a Multinominal Model
-
Урок 138.
00:09:57
Marginal vs Conditional Probability
-
Урок 139.
00:06:09
Sigmoid vs Softmax
-
Урок 140.
00:04:43
Refactoring Sigmoid to Softmax
-
Урок 141.
00:02:37
Implementing Accuracy Gauges
-
Урок 142.
00:03:16
Calculating Accuracy
-
Урок 143.
00:02:11
Handwriting Recognition
-
Урок 144.
00:05:12
Greyscale Values
-
Урок 145.
00:03:30
Many Features
-
Урок 146.
00:06:07
Flattening Image Data
-
Урок 147.
00:05:45
Encoding Label Values
-
Урок 148.
00:07:27
Implementing an Accuracy Gauge
-
Урок 149.
00:01:56
Unchanging Accuracy
-
Урок 150.
00:08:13
Debugging the Calculation Process
-
Урок 151.
00:06:16
Dealing with Zero Variances
-
Урок 152.
00:02:37
Backfilling Variance
-
Урок 153.
00:04:15
Handing Large Datasets
-
Урок 154.
00:04:51
Minimizing Memory Usage
-
Урок 155.
00:05:15
Creating Memory Snapshots
-
Урок 156.
00:06:50
The Javascript Garbage Collector
-
Урок 157.
00:05:51
Shallow vs Retained Memory Usage
-
Урок 158.
00:08:30
Measuring Memory Usage
-
Урок 159.
00:03:15
Releasing References
-
Урок 160.
00:03:51
Measuring Footprint Reduction
-
Урок 161.
00:01:32
Optimization Tensorflow Memory Usage
-
Урок 162.
00:04:41
Tensorflow's Eager Memory Usage
-
Урок 163.
00:02:49
Cleaning up Tensors with Tidy
-
Урок 164.
00:03:32
Implementing TF Tidy
-
Урок 165.
00:03:58
Tidying the Training Loop
-
Урок 166.
00:01:35
Measuring Reduced Memory Usage
-
Урок 167.
00:02:36
One More Optimization
-
Урок 168.
00:02:45
Final Memory Report
-
Урок 169.
00:04:04
Plotting Cost History
-
Урок 170.
00:04:19
NaN in Cost History
-
Урок 171.
00:04:47
Fixing Cost History
-
Урок 172.
00:01:41
Massaging Learning Parameters
-
Урок 173.
00:04:28
Improving Model Accuracy
-
Урок 174.
00:02:07
Loading CSV Files
-
Урок 175.
00:02:01
A Test Dataset
-
Урок 176.
00:03:09
Reading Files from Disk
-
Урок 177.
00:02:55
Splitting into Columns
-
Урок 178.
00:02:31
Dropping Trailing Columns
-
Урок 179.
00:03:37
Parsing Number Values
-
Урок 180.
00:04:20
Custom Value Parsing
-
Урок 181.
00:05:36
Extracting Data Columns
-
Урок 182.
00:05:14
Shuffling Data via Seed Phrase
-
Урок 183.
00:07:45
Splitting Test and Training
Udemy Last updated 05/2023