Урок 1.00:00:58
Getting Started - How to Get Help
Урок 2.00:06:05
Solving Machine Learning Problems
Урок 3.00:09:54
A Complete Walkthrough
Урок 4.00:02:02
App Setup
Урок 5.00:02:54
Problem Outline
Урок 6.00:04:12
Identifying Relevant Data
Урок 7.00:05:48
Dataset Structures
Урок 8.00:04:00
Recording Observation Data
Урок 9.00:04:36
What Type of Problem?
Урок 10.00:08:24
How K-Nearest Neighbor Works
Урок 11.00:09:57
Lodash Review
Урок 12.00:07:17
Implementing KNN
Урок 13.00:05:54
Finishing KNN Implementation
Урок 14.00:04:49
Testing the Algorithm
Урок 15.00:04:13
Interpreting Bad Results
Урок 16.00:04:06
Test and Training Data
Урок 17.00:03:49
Randomizing Test Data
Урок 18.00:03:42
Generalizing KNN
Урок 19.00:05:19
Gauging Accuracy
Урок 20.00:03:30
Printing a Report
Урок 21.00:05:14
Refactoring Accuracy Reporting
Урок 22.00:11:39
Investigating Optimal K Values
Урок 23.00:06:37
Updating KNN for Multiple Features
Урок 24.00:03:57
Multi-Dimensional KNN
Урок 25.00:09:51
N-Dimension Distance
Урок 26.00:08:28
Arbitrary Feature Spaces
Урок 27.00:05:37
Magnitude Offsets in Features
Урок 28.00:07:33
Feature Normalization
Урок 29.00:07:15
Normalization with MinMax
Урок 30.00:04:23
Applying Normalization
Урок 31.00:07:48
Feature Selection with KNN
Урок 32.00:06:11
Objective Feature Picking
Урок 33.00:02:54
Evaluating Different Feature Values
Урок 34.00:07:28
Let's Get Our Bearings
Урок 35.00:04:32
A Plan to Move Forward
Урок 36.00:12:05
Tensor Shape and Dimension
Урок 37.00:08:19
Elementwise Operations
Урок 38.00:06:48
Broadcasting Operations
Урок 39.00:03:48
Logging Tensor Data
Урок 40.00:05:25
Tensor Accessors
Урок 41.00:07:47
Creating Slices of Data
Урок 42.00:05:29
Tensor Concatenation
Урок 43.00:05:14
Summing Values Along an Axis
Урок 44.00:07:48
Massaging Dimensions with ExpandDims
Урок 45.00:04:57
KNN with Regression
Урок 46.00:04:05
A Change in Data Structure
Урок 47.00:09:19
KNN with Tensorflow
Урок 48.00:06:31
Maintaining Order Relationships
Урок 49.00:08:01
Sorting Tensors
Урок 50.00:07:44
Averaging Top Values
Урок 51.00:03:27
Moving to the Editor
Урок 52.00:10:11
Loading CSV Data
Урок 53.00:06:11
Running an Analysis
Урок 54.00:06:27
Reporting Error Percentages
Урок 55.00:07:34
Normalization or Standardization?
Урок 56.00:07:38
Numerical Standardization with Tensorflow
Урок 57.00:04:02
Applying Standardization
Урок 58.00:08:15
Debugging Calculations
Урок 59.00:04:01
What Now?
Урок 60.00:02:40
Linear Regression
Урок 61.00:04:53
Why Linear Regression?
Урок 62.00:13:05
Understanding Gradient Descent
Урок 63.00:10:20
Guessing Coefficients with MSE
Урок 64.00:05:57
Observations Around MSE
Урок 65.00:07:13
Derivatives!
Урок 66.00:11:47
Gradient Descent in Action
Урок 67.00:05:47
Quick Breather and Review
Урок 68.00:17:06
Why a Learning Rate?
Урок 69.00:03:49
Answering Common Questions
Урок 70.00:04:44
Gradient Descent with Multiple Terms
Урок 71.00:10:40
Multiple Terms in Action
Урок 72.00:06:02
Project Overview
Урок 73.00:05:18
Data Loading
Урок 74.00:08:33
Default Algorithm Options
Урок 75.00:03:19
Formulating the Training Loop
Урок 76.00:09:25
Initial Gradient Descent Implementation
Урок 77.00:06:53
Calculating MSE Slopes
Урок 78.00:03:12
Updating Coefficients
Урок 79.00:10:08
Interpreting Results
Урок 80.00:07:10
Matrix Multiplication
Урок 81.00:06:41
More on Matrix Multiplication
Урок 82.00:06:22
Matrix Form of Slope Equations
Урок 83.00:09:29
Simplification with Matrix Multiplication
Урок 84.00:14:02
How it All Works Together!
Урок 85.00:07:41
Refactoring the Linear Regression Class
Урок 86.00:08:59
Refactoring to One Equation
Урок 87.00:06:14
A Few More Changes
Урок 88.00:03:20
Same Results? Or Not?
Урок 89.00:08:38
Calculating Model Accuracy
Урок 90.00:07:45
Implementing Coefficient of Determination
Урок 91.00:07:48
Dealing with Bad Accuracy
Урок 92.00:04:37
Reminder on Standardization
Урок 93.00:03:39
Data Processing in a Helper Method
Урок 94.00:05:58
Reapplying Standardization
Урок 95.00:05:37
Fixing Standardization Issues
Урок 96.00:03:16
Massaging Learning Rates
Урок 97.00:11:45
Moving Towards Multivariate Regression
Урок 98.00:07:29
Refactoring for Multivariate Analysis
Урок 99.00:08:05
Learning Rate Optimization
Урок 100.00:05:22
Recording MSE History
Урок 101.00:06:42
Updating Learning Rate
Урок 102.00:04:18
Observing Changing Learning Rate and MSE
Урок 103.00:05:22
Plotting MSE Values
Урок 104.00:04:23
Plotting MSE History against B Values
Урок 105.00:07:18
Batch and Stochastic Gradient Descent
Урок 106.00:05:07
Refactoring Towards Batch Gradient Descent
Урок 107.00:06:03
Determining Batch Size and Quantity
Урок 108.00:07:49
Iterating Over Batches
Урок 109.00:05:42
Evaluating Batch Gradient Descent Results
Урок 110.00:07:38
Making Predictions with the Model
Урок 111.00:02:28
Introducing Logistic Regression
Урок 112.00:06:32
Logistic Regression in Action
Урок 113.00:05:32
Bad Equation Fits
Урок 114.00:04:32
The Sigmoid Equation
Урок 115.00:07:48
Decision Boundaries
Урок 116.00:01:12
Changes for Logistic Regression
Урок 117.00:05:52
Project Setup for Logistic Regression
Урок 118.00:04:28
Importing Vehicle Data
Урок 119.00:04:19
Encoding Label Values
Урок 120.00:07:09
Updating Linear Regression for Logistic Regression
Урок 121.00:04:28
The Sigmoid Equation with Logistic Regression
Урок 122.00:07:47
A Touch More Refactoring
Урок 123.00:03:28
Gauging Classification Accuracy
Урок 124.00:05:17
Implementing a Test Function
Урок 125.00:07:17
Variable Decision Boundaries
Урок 126.00:05:47
Mean Squared Error vs Cross Entropy
Урок 127.00:05:09
Refactoring with Cross Entropy
Урок 128.00:04:37
Finishing the Cost Refactor
Урок 129.00:03:25
Plotting Changing Cost History
Урок 130.00:02:20
Multinominal Logistic Regression
Урок 131.00:05:08
A Smart Refactor to Multinominal Analysis
Урок 132.00:03:46
A Smarter Refactor!
Урок 133.00:09:51
A Single Instance Approach
Урок 134.00:04:40
Refactoring to Multi-Column Weights
Урок 135.00:04:38
A Problem to Test Multinominal Classification
Урок 136.00:04:42
Classifying Continuous Values
Урок 137.00:06:20
Training a Multinominal Model
Урок 138.00:09:57
Marginal vs Conditional Probability
Урок 139.00:06:09
Sigmoid vs Softmax
Урок 140.00:04:43
Refactoring Sigmoid to Softmax
Урок 141.00:02:37
Implementing Accuracy Gauges
Урок 142.00:03:16
Calculating Accuracy
Урок 143.00:02:11
Handwriting Recognition
Урок 144.00:05:12
Greyscale Values
Урок 145.00:03:30
Many Features
Урок 146.00:06:07
Flattening Image Data
Урок 147.00:05:45
Encoding Label Values
Урок 148.00:07:27
Implementing an Accuracy Gauge
Урок 149.00:01:56
Unchanging Accuracy
Урок 150.00:08:13
Debugging the Calculation Process
Урок 151.00:06:16
Dealing with Zero Variances
Урок 152.00:02:37
Backfilling Variance
Урок 153.00:04:15
Handing Large Datasets
Урок 154.00:04:51
Minimizing Memory Usage
Урок 155.00:05:15
Creating Memory Snapshots
Урок 156.00:06:50
The Javascript Garbage Collector
Урок 157.00:05:51
Shallow vs Retained Memory Usage
Урок 158.00:08:30
Measuring Memory Usage
Урок 159.00:03:15
Releasing References
Урок 160.00:03:51
Measuring Footprint Reduction
Урок 161.00:01:32
Optimization Tensorflow Memory Usage
Урок 162.00:04:41
Tensorflow's Eager Memory Usage
Урок 163.00:02:49
Cleaning up Tensors with Tidy
Урок 164.00:03:32
Implementing TF Tidy
Урок 165.00:03:58
Tidying the Training Loop
Урок 166.00:01:35
Measuring Reduced Memory Usage
Урок 167.00:02:36
One More Optimization
Урок 168.00:02:45
Final Memory Report
Урок 169.00:04:04
Plotting Cost History
Урок 170.00:04:19
NaN in Cost History
Урок 171.00:04:47
Fixing Cost History
Урок 172.00:01:41
Massaging Learning Parameters
Урок 173.00:04:28
Improving Model Accuracy
Урок 174.00:02:07
Loading CSV Files
Урок 175.00:02:01
A Test Dataset
Урок 176.00:03:09
Reading Files from Disk
Урок 177.00:02:55
Splitting into Columns
Урок 178.00:02:31
Dropping Trailing Columns
Урок 179.00:03:37
Parsing Number Values
Урок 180.00:04:20
Custom Value Parsing
Урок 181.00:05:36
Extracting Data Columns
Урок 182.00:05:14
Shuffling Data via Seed Phrase
Урок 183.00:07:45
Splitting Test and Training
Udemy Last updated 05/2023