Этот материал находится в платной подписке. Оформи премиум подписку и смотри или слушай Mathematical Foundations of Machine Learning, а также все другие курсы, прямо сейчас!
Премиум
  1. Урок 1. 00:23:30
    What Linear Algebra Is
  2. Урок 2. 00:09:19
    Plotting a System of Linear Equations
  3. Урок 3. 00:05:07
    Linear Algebra Exercise
  4. Урок 4. 00:02:34
    Tensors
  5. Урок 5. 00:13:05
    Scalars
  6. Урок 6. 00:12:20
    Vectors and Vector Transposition
  7. Урок 7. 00:14:38
    Norms and Unit Vectors
  8. Урок 8. 00:04:31
    Basis, Orthogonal, and Orthonormal Vectors
  9. Урок 9. 00:08:24
    Matrix Tensors
  10. Урок 10. 00:06:44
    Generic Tensor Notation
  11. Урок 11. 00:02:08
    Exercises on Algebra Data Structures
  12. Урок 12. 00:01:20
    Segment Intro
  13. Урок 13. 00:03:53
    Tensor Transposition
  14. Урок 14. 00:06:13
    Basic Tensor Arithmetic, incl. the Hadamard Product
  15. Урок 15. 00:03:32
    Tensor Reduction
  16. Урок 16. 00:05:14
    The Dot Product
  17. Урок 17. 00:02:39
    Exercises on Tensor Operations
  18. Урок 18. 00:09:48
    Solving Linear Systems with Substitution
  19. Урок 19. 00:11:48
    Solving Linear Systems with Elimination
  20. Урок 20. 00:11:00
    Visualizing Linear Systems
  21. Урок 21. 00:02:06
    Segment Intro
  22. Урок 22. 00:05:02
    The Frobenius Norm
  23. Урок 23. 00:24:29
    Matrix Multiplication
  24. Урок 24. 00:04:42
    Symmetric and Identity Matrices
  25. Урок 25. 00:07:22
    Matrix Multiplication Exercises
  26. Урок 26. 00:17:07
    Matrix Inversion
  27. Урок 27. 00:03:26
    Diagonal Matrices
  28. Урок 28. 00:05:17
    Orthogonal Matrices
  29. Урок 29. 00:15:00
    Orthogonal Matrix Exercises
  30. Урок 30. 00:17:53
    Segment Intro
  31. Урок 31. 00:07:32
    Applying Matrices
  32. Урок 32. 00:18:21
    Affine Transformations
  33. Урок 33. 00:26:14
    Eigenvectors and Eigenvalues
  34. Урок 34. 00:08:05
    Matrix Determinants
  35. Урок 35. 00:08:42
    Determinants of Larger Matrices
  36. Урок 36. 00:04:42
    Determinant Exercises
  37. Урок 37. 00:15:44
    Determinants and Eigenvalues
  38. Урок 38. 00:12:16
    Eigendecomposition
  39. Урок 39. 00:12:30
    Eigenvector and Eigenvalue Applications
  40. Урок 40. 00:03:22
    Segment Intro
  41. Урок 41. 00:10:50
    Singular Value Decomposition
  42. Урок 42. 00:11:00
    Data Compression with SVD
  43. Урок 43. 00:12:24
    The Moore-Penrose Pseudoinverse
  44. Урок 44. 00:18:25
    Regression with the Pseudoinverse
  45. Урок 45. 00:04:37
    The Trace Operator
  46. Урок 46. 00:08:28
    Principal Component Analysis (PCA)
  47. Урок 47. 00:05:38
    Resources for Further Study of Linear Algebra
  48. Урок 48. 00:03:40
    Segment Intro
  49. Урок 49. 00:13:26
    Intro to Differential Calculus
  50. Урок 50. 00:02:25
    Intro to Integral Calculus
  51. Урок 51. 00:06:46
    The Method of Exhaustion
  52. Урок 52. 00:09:34
    Calculus of the Infinitesimals
  53. Урок 53. 00:08:36
    Calculus Applications
  54. Урок 54. 00:17:50
    Calculating Limits
  55. Урок 55. 00:06:07
    Exercises on Limits
  56. Урок 56. 00:01:17
    Segment Intro
  57. Урок 57. 00:15:47
    The Delta Method
  58. Урок 58. 00:13:53
    How Derivatives Arise from Limits
  59. Урок 59. 00:04:20
    Derivative Notation
  60. Урок 60. 00:01:30
    The Derivative of a Constant
  61. Урок 61. 00:01:17
    The Power Rule
  62. Урок 62. 00:03:11
    The Constant Multiple Rule
  63. Урок 63. 00:02:27
    The Sum Rule
  64. Урок 64. 00:11:09
    Exercises on Derivative Rules
  65. Урок 65. 00:03:51
    The Product Rule
  66. Урок 66. 00:04:05
    The Quotient Rule
  67. Урок 67. 00:06:46
    The Chain Rule
  68. Урок 68. 00:11:49
    Advanced Exercises on Derivative Rules
  69. Урок 69. 00:04:38
    The Power Rule on a Function Chain
  70. Урок 70. 00:01:50
    Segment Intro
  71. Урок 71. 00:04:43
    What Automatic Differentiation Is
  72. Урок 72. 00:06:18
    Autodiff with PyTorch
  73. Урок 73. 00:03:53
    Autodiff with TensorFlow
  74. Урок 74. 00:19:42
    The Line Equation as a Tensor Graph
  75. Урок 75. 00:40:12
    Machine Learning with Autodiff
  76. Урок 76. 00:22:39
    Segment Intro
  77. Урок 77. 00:29:23
    What Partial Derivatives Are
  78. Урок 78. 00:06:16
    Partial Derivative Exercises
  79. Урок 79. 00:05:19
    Calculating Partial Derivatives with Autodiff
  80. Урок 80. 00:14:40
    Advanced Partial Derivatives
  81. Урок 81. 00:06:12
    Advanced Partial-Derivative Exercises
  82. Урок 82. 00:02:28
    Partial Derivative Notation
  83. Урок 83. 00:09:18
    The Chain Rule for Partial Derivatives
  84. Урок 84. 00:05:19
    Exercises on the Multivariate Chain Rule
  85. Урок 85. 00:15:25
    Point-by-Point Regression
  86. Урок 86. 00:15:17
    The Gradient of Quadratic Cost
  87. Урок 87. 00:12:53
    Descending the Gradient of Cost
  88. Урок 88. 00:24:22
    The Gradient of Mean Squared Error
  89. Урок 89. 00:06:00
    Backpropagation
  90. Урок 90. 00:11:54
    Higher-Order Partial Derivatives
  91. Урок 91. 00:02:56
    Exercise on Higher-Order Partial Derivatives
  92. Урок 92. 00:02:45
    Segment Intro
  93. Урок 93. 00:09:14
    Binary Classification
  94. Урок 94. 00:02:30
    The Confusion Matrix
  95. Урок 95. 00:09:43
    The Receiver-Operating Characteristic (ROC) Curve
  96. Урок 96. 00:06:15
    What Integral Calculus Is
  97. Урок 97. 00:05:38
    The Integral Calculus Rules
  98. Урок 98. 00:02:59
    Indefinite Integral Exercises
  99. Урок 99. 00:06:48
    Definite Integrals
  100. Урок 100. 00:04:52
    Numeric Integration with Python
  101. Урок 101. 00:04:25
    Definite Integral Exercise
  102. Урок 102. 00:03:36
    Finding the Area Under the ROC Curve
  103. Урок 103. 00:04:02
    Resources for the Further Study of Calculus
  104. Урок 104. 00:01:56
    Congratulations!
  105. Урок 105. 00:07:40
    Probability & Information Theory
  106. Урок 106. 00:03:37
    A Brief History of Probability Theory
  107. Урок 107. 00:05:16
    What Probability Theory Is
  108. Урок 108. 00:08:36
    Events and Sample Spaces
  109. Урок 109. 00:08:03
    Multiple Independent Observations
  110. Урок 110. 00:06:48
    Combinatorics
  111. Урок 111. 00:09:57
    Exercises on Event Probabilities
  112. Урок 112. 00:00:22
    More Lectures are on their Way!