Этот материал находится в платной подписке. Оформи премиум подписку и смотри или слушай Mathematical Foundations of Machine Learning, а также все другие курсы, прямо сейчас!
Купить сейчас
  • Урок 1. 00:23:30
    What Linear Algebra Is
  • Урок 2. 00:09:19
    Plotting a System of Linear Equations
  • Урок 3. 00:05:07
    Linear Algebra Exercise
  • Урок 4. 00:02:34
    Tensors
  • Урок 5. 00:13:05
    Scalars
  • Урок 6. 00:12:20
    Vectors and Vector Transposition
  • Урок 7. 00:14:38
    Norms and Unit Vectors
  • Урок 8. 00:04:31
    Basis, Orthogonal, and Orthonormal Vectors
  • Урок 9. 00:08:24
    Matrix Tensors
  • Урок 10. 00:06:44
    Generic Tensor Notation
  • Урок 11. 00:02:08
    Exercises on Algebra Data Structures
  • Урок 12. 00:01:20
    Segment Intro
  • Урок 13. 00:03:53
    Tensor Transposition
  • Урок 14. 00:06:13
    Basic Tensor Arithmetic, incl. the Hadamard Product
  • Урок 15. 00:03:32
    Tensor Reduction
  • Урок 16. 00:05:14
    The Dot Product
  • Урок 17. 00:02:39
    Exercises on Tensor Operations
  • Урок 18. 00:09:48
    Solving Linear Systems with Substitution
  • Урок 19. 00:11:48
    Solving Linear Systems with Elimination
  • Урок 20. 00:11:00
    Visualizing Linear Systems
  • Урок 21. 00:02:06
    Segment Intro
  • Урок 22. 00:05:02
    The Frobenius Norm
  • Урок 23. 00:24:29
    Matrix Multiplication
  • Урок 24. 00:04:42
    Symmetric and Identity Matrices
  • Урок 25. 00:07:22
    Matrix Multiplication Exercises
  • Урок 26. 00:17:07
    Matrix Inversion
  • Урок 27. 00:03:26
    Diagonal Matrices
  • Урок 28. 00:05:17
    Orthogonal Matrices
  • Урок 29. 00:15:00
    Orthogonal Matrix Exercises
  • Урок 30. 00:17:53
    Segment Intro
  • Урок 31. 00:07:32
    Applying Matrices
  • Урок 32. 00:18:21
    Affine Transformations
  • Урок 33. 00:26:14
    Eigenvectors and Eigenvalues
  • Урок 34. 00:08:05
    Matrix Determinants
  • Урок 35. 00:08:42
    Determinants of Larger Matrices
  • Урок 36. 00:04:42
    Determinant Exercises
  • Урок 37. 00:15:44
    Determinants and Eigenvalues
  • Урок 38. 00:12:16
    Eigendecomposition
  • Урок 39. 00:12:30
    Eigenvector and Eigenvalue Applications
  • Урок 40. 00:03:22
    Segment Intro
  • Урок 41. 00:10:50
    Singular Value Decomposition
  • Урок 42. 00:11:00
    Data Compression with SVD
  • Урок 43. 00:12:24
    The Moore-Penrose Pseudoinverse
  • Урок 44. 00:18:25
    Regression with the Pseudoinverse
  • Урок 45. 00:04:37
    The Trace Operator
  • Урок 46. 00:08:28
    Principal Component Analysis (PCA)
  • Урок 47. 00:05:38
    Resources for Further Study of Linear Algebra
  • Урок 48. 00:03:40
    Segment Intro
  • Урок 49. 00:13:26
    Intro to Differential Calculus
  • Урок 50. 00:02:25
    Intro to Integral Calculus
  • Урок 51. 00:06:46
    The Method of Exhaustion
  • Урок 52. 00:09:34
    Calculus of the Infinitesimals
  • Урок 53. 00:08:36
    Calculus Applications
  • Урок 54. 00:17:50
    Calculating Limits
  • Урок 55. 00:06:07
    Exercises on Limits
  • Урок 56. 00:01:17
    Segment Intro
  • Урок 57. 00:15:47
    The Delta Method
  • Урок 58. 00:13:53
    How Derivatives Arise from Limits
  • Урок 59. 00:04:20
    Derivative Notation
  • Урок 60. 00:01:30
    The Derivative of a Constant
  • Урок 61. 00:01:17
    The Power Rule
  • Урок 62. 00:03:11
    The Constant Multiple Rule
  • Урок 63. 00:02:27
    The Sum Rule
  • Урок 64. 00:11:09
    Exercises on Derivative Rules
  • Урок 65. 00:03:51
    The Product Rule
  • Урок 66. 00:04:05
    The Quotient Rule
  • Урок 67. 00:06:46
    The Chain Rule
  • Урок 68. 00:11:49
    Advanced Exercises on Derivative Rules
  • Урок 69. 00:04:38
    The Power Rule on a Function Chain
  • Урок 70. 00:01:50
    Segment Intro
  • Урок 71. 00:04:43
    What Automatic Differentiation Is
  • Урок 72. 00:06:18
    Autodiff with PyTorch
  • Урок 73. 00:03:53
    Autodiff with TensorFlow
  • Урок 74. 00:19:42
    The Line Equation as a Tensor Graph
  • Урок 75. 00:40:12
    Machine Learning with Autodiff
  • Урок 76. 00:22:39
    Segment Intro
  • Урок 77. 00:29:23
    What Partial Derivatives Are
  • Урок 78. 00:06:16
    Partial Derivative Exercises
  • Урок 79. 00:05:19
    Calculating Partial Derivatives with Autodiff
  • Урок 80. 00:14:40
    Advanced Partial Derivatives
  • Урок 81. 00:06:12
    Advanced Partial-Derivative Exercises
  • Урок 82. 00:02:28
    Partial Derivative Notation
  • Урок 83. 00:09:18
    The Chain Rule for Partial Derivatives
  • Урок 84. 00:05:19
    Exercises on the Multivariate Chain Rule
  • Урок 85. 00:15:25
    Point-by-Point Regression
  • Урок 86. 00:15:17
    The Gradient of Quadratic Cost
  • Урок 87. 00:12:53
    Descending the Gradient of Cost
  • Урок 88. 00:24:22
    The Gradient of Mean Squared Error
  • Урок 89. 00:06:00
    Backpropagation
  • Урок 90. 00:11:54
    Higher-Order Partial Derivatives
  • Урок 91. 00:02:56
    Exercise on Higher-Order Partial Derivatives
  • Урок 92. 00:02:45
    Segment Intro
  • Урок 93. 00:09:14
    Binary Classification
  • Урок 94. 00:02:30
    The Confusion Matrix
  • Урок 95. 00:09:43
    The Receiver-Operating Characteristic (ROC) Curve
  • Урок 96. 00:06:15
    What Integral Calculus Is
  • Урок 97. 00:05:38
    The Integral Calculus Rules
  • Урок 98. 00:02:59
    Indefinite Integral Exercises
  • Урок 99. 00:06:48
    Definite Integrals
  • Урок 100. 00:04:52
    Numeric Integration with Python
  • Урок 101. 00:04:25
    Definite Integral Exercise
  • Урок 102. 00:03:36
    Finding the Area Under the ROC Curve
  • Урок 103. 00:04:02
    Resources for the Further Study of Calculus
  • Урок 104. 00:01:56
    Congratulations!
  • Урок 105. 00:07:40
    Probability & Information Theory
  • Урок 106. 00:03:37
    A Brief History of Probability Theory
  • Урок 107. 00:05:16
    What Probability Theory Is
  • Урок 108. 00:08:36
    Events and Sample Spaces
  • Урок 109. 00:08:03
    Multiple Independent Observations
  • Урок 110. 00:06:48
    Combinatorics
  • Урок 111. 00:09:57
    Exercises on Event Probabilities
  • Урок 112. 00:00:22
    More Lectures are on their Way!