
karpov.courses
Мы создали школу Data Science, предлагающую программы обучения для любого уровня подготовки. Будем рады видеть вас в числе наших студентов!
Hard ML - это не стандартный курс по машинному обучению. Моя команда не стала ограничиваться одним лишь обучением моделей и решила охватить абсолютно все этапы работы ML-инженера. Вы научитесь самостоятельно собирать и размечать данные, строить пайплайны их поставки, деплоить приложения, настраивать мониторинги и оценивать эффективность алгоритмов.
Вы получите максимально глубокое погружение в задачи, с которыми сталкивается современный бизнес. Каждая тема курса будет рассмотрена на реальных кейсах. К концу каждого модуля у вас будет собственный ML-сервис, решающий сложную и важную задачу. Этот курс станет проверкой на прочность для любого ML-специалиста, поэтому дерзайте — я верю в вас!
ДЛЯ КОГО ЭТА ПРОГРАММА:
ML-разработчик
Вы уже имеет опыт работы в областях связанных с машинным обучением и хотите понять, как решать специфические задачи.
Тимлид
Программа поможет вам понять, как лучше создать сервис, который сможет решать сложные бизнес-задачи с использованием машинного обучения. От момента постановки задачи, до запуска приложения на основе ML алгоритмов в работу.
ПРОГРАММА КУРСА:
ВЫ ОСВОИТЕ:
Динамическое ценообразование
Научим делать динамическое ценообразование на основе машинного обучения, что позволит вам максимизировать прибыль в компании, в которой вы работаете и построить баланс между трафиком, выручкой и маржой.
Matching
Матчинг решает несколько важных проблем для любых компаний. Вы научитесь выявлять товары-дубли по их названиям. Научитесь сопоставлять покупателей в онлайне, приложении и в офлайне. Сможете мониторить цены постоянно
Uplift-моделирование
Научим делать uplift-моделирование от постановки задачи до реализации. Данный тип моделирования позволит учесть изменения в поведении клиентов, которые, к примеру, были вызваны рекламной акцией (реализация модели next best action). Благодаря данной модели можно будет планировать и своевременно предлагать определенным клиентам нужные акции и особые цены.
A/B тестирование при помощи ML
Вы научитесь использовать ML алгортимы для ускорения A/B тестов. Помимо этого тесты станут намного более чувствительными, а плохо показывающие себя тесты можно будет быстро выявить и отключить.
Поддержание жизни ML-модели
ML-модели со временем умирают. Чтобы этого не происходило её надо доучивать. Мы научим делать это правильно.
Мы создали школу Data Science, предлагающую программы обучения для любого уровня подготовки. Будем рады видеть вас в числе наших студентов!
Математика составляет основу науки о данных и машинного обучения. Таким образом, чтобы стать лучшим специалистом по данным, вы должны иметь практическое понимание наиболее актуальной математики. Начать заниматься наукой о данных легко благодаря высокоуровневым библиотекам Scikit-learn и Keras. Понимание математики, лежащей в основе алгоритмов этих библиотек, открывает перед вами бесконечное количество возможностей. От выявления проблем моделирова
Несколько видео, где представлена практика, необходимая для прохождения собеседований по проектированию систем машинного обучения.
Позвольте мне перейти к делу. Это не обычный курс анализа временных рядов. Этот курс охватывает современные разработки, такие как глубокое обучение, классификация временных рядов (которые могут помочь пользователям понять данные смартфона или прочитать ваши мысли по электрической активности мозга) и многое другое.
Добро пожаловать в раздел «Машинное обучение: Обработка естественного языка в Python» (V2). НЛП: Используйте марковские модели, NLTK, искусственный интеллект, глубокое обучение, машинное обучение и науку о данных в Python.
Базовые знания, необходимые для погружения в машинное обучение. Цель этого курса проста и уникальна по своей природе: вооружить вас базовыми знаниями, необходимыми для успешного прохождения любого собеседования по машинному обучению и получения работы в отрасли. Давай приступим к работе!