-
Урок 1.
00:01:05
Updates on Udemy Reviews
-
Урок 2.
00:03:44
Introduction
-
Урок 3.
00:09:06
Key Tips and Best Practices
-
Урок 4.
00:14:57
Course Outline and Key Learning Outcomes
-
Урок 5.
00:02:33
Introduction to Case Study and Key Learning Outcomes
-
Урок 6.
00:09:22
Task #1: Problem Statement and Business Case
-
Урок 7.
00:12:45
Task #2: Import Libraries and Datasets
-
Урок 8.
00:13:32
Task #3: Explore Dataset - Part 1
-
Урок 9.
00:09:45
Task #3: Explore Dataset - Part 2
-
Урок 10.
00:08:48
Task #3: Explore Dataset - Part 3
-
Урок 11.
00:09:46
Task #3: Explore Dataset - Part 4
-
Урок 12.
00:09:39
Task #4: Perform Data Cleaning
-
Урок 13.
00:15:26
Task #5: Understand intuition of Random Forest, Logistic Regression, and ANNs
-
Урок 14.
00:12:35
Task #6: Understand Classification KPIs
-
Урок 15.
00:07:54
Task #7: Build and Train Logistic Regression Classifier
-
Урок 16.
00:02:58
Task #8: Build and Train Random Forest Classifier Model
-
Урок 17.
00:10:26
Task #9: Build and Train Artificial Neural Network Classifier Model
-
Урок 18.
00:02:05
Introduction to Case Study and Key Learning Outcomes
-
Урок 19.
00:10:42
Task #1: Understand Problem Statement and Business Case
-
Урок 20.
00:14:43
Task #2: Import Libraries and Datasets
-
Урок 21.
00:19:56
Task #3: Perform Data Visualization
-
Урок 22.
00:15:19
Task #4: Understand the Theory and Intuition behind K-Mean Algorithm
-
Урок 23.
00:08:11
Task #5: Obtain Optimal Number of Clusters "K"
-
Урок 24.
00:09:38
Task #6: Apply K-Means Clustering to Perform Market Segmentation
-
Урок 25.
00:10:07
Task #7: Understand the Intuition Behind Principal Component Analysis (PCA)
-
Урок 26.
00:07:51
Task #8: Understand the Intuition Behind Autoencoders
-
Урок 27.
00:12:08
Task #9: Build and Train Autoencoder - Part #1
-
Урок 28.
00:14:03
Build and Train Autoencoder - Part #2
-
Урок 29.
00:01:32
Introduction to Case Study and Key Learning Outcomes
-
Урок 30.
00:11:52
Task #1: Understand the Problem Statement and Business Case
-
Урок 31.
00:11:18
Task #2: Import Datasets - Part #1
-
Урок 32.
00:05:40
Task #2: Import Datasets - Part #2
-
Урок 33.
00:12:22
Task #3: Explore Data - Part #1
-
Урок 34.
00:11:12
Task #3: Explore Data - Part #2
-
Урок 35.
00:08:29
Task #3: Explore Data - Part #3
-
Урок 36.
00:12:57
Task #3: Explore Data - Part #4
-
Урок 37.
00:06:09
Task #4: Understand Facebook Prophet intuition
-
Урок 38.
00:10:30
Task #5: Train The Model - Part #1
-
Урок 39.
00:12:24
Task #6: Train The Model - Part #2
-
Урок 40.
00:02:14
Introduction to Case Study and Key Learning Outcomes
-
Урок 41.
00:08:06
Task #1: Understand the Business Case and Problem Statement
-
Урок 42.
00:16:41
Task #2: Load and Explore Dataset
-
Урок 43.
00:06:11
Task #3: Visualize Datasets
-
Урок 44.
00:13:57
Task #4: Understand Intuition Behind Convolutional Neural Networks (CNNs)
-
Урок 45.
00:09:54
Task #5: Understand Intuition Behind Transfer Learning
-
Урок 46.
00:05:10
Task #6: Load Model with Pretrained Weights
-
Урок 47.
00:20:09
Task #7: Build and Train ResNet
-
Урок 48.
00:15:22
Task #8: Evaluate Trained Model Performance
-
Урок 49.
00:01:50
Introduction to Case Study and Key Learning Outcomes
-
Урок 50.
00:05:48
Task #1: Understand Problem Statement and Business Case
-
Урок 51.
00:07:20
Task #2: Import Libraries and Datasets
-
Урок 52.
00:09:59
Task #3: Explore Dataset - Part #1
-
Урок 53.
00:14:41
Task #3: Explore Dataset - Part #2
-
Урок 54.
00:06:41
Task #4: Perform Data Cleaning
-
Урок 55.
00:05:15
Task #5: Remove Punctuation
-
Урок 56.
00:07:57
Task #6: Remove Stopwords
-
Урок 57.
00:09:19
Task #7: Perform Tokenization/Count Vectorization
-
Урок 58.
00:13:46
Task #8: Perform Text Cleaning pipeline
-
Урок 59.
00:17:52
Task #9: Naive Bayes Intuition
-
Урок 60.
00:04:02
Task #10: Train a Naive Bayes Classifier
-
Урок 61.
00:07:41
Task #11: Evaluate Trained Naive Bayes Classifier
-
Урок 62.
00:06:10
Task #12: Train and Evaluate a Logistic Regression Classifier
-
Урок 63.
00:05:57
Introduction and Welcome Message
-
Урок 64.
00:09:05
Task #1 - Understand the Problem Statement & Business Case
-
Урок 65.
00:11:23
Task #2 - Import Libraries and Datasets
-
Урок 66.
00:17:14
Task #3 - Visualize and Explore Dataset
-
Урок 67.
00:09:11
Task #4 - Understand the Intuition behind ResNet, CNNs, and Transfer Learning
-
Урок 68.
00:10:59
Task #5 - Build & Train ResNet Classifiers
-
Урок 69.
00:05:44
Task #6 - Assess Trained ResNet Model Performance
-
Урок 70.
00:10:48
Task #7 - Understand the Intuition behind ResUnet Segmentation Models
-
Урок 71.
00:11:44
Task #8 - Build & Train a ResUnet Segmentation Model
-
Урок 72.
00:10:15
Task #9 - Assess Trained ResUnet Model