1. Урок 1. 00:02:33
    What Does the Course Cover?
  2. Урок 2. 00:05:18
    Installing Applications and Creating Environment
  3. Урок 3. 00:10:58
    Hello World
  4. Урок 4. 00:12:33
    Iris Project 1: Working with Error Messages
  5. Урок 5. 00:08:46
    Iris Project 2: Reading CSV Data into Memory
  6. Урок 6. 00:08:44
    Iris Project 3: Loading data from Seaborn
  7. Урок 7. 00:10:21
    Iris Project 4: Visualization
  8. Урок 8. 00:09:12
    Scikit-Learn
  9. Урок 9. 00:19:12
    EDA
  10. Урок 10. 00:08:48
    Correlation Analysis and Feature Selection
  11. Урок 11. 00:13:04
    Correlation Analysis and Feature Selection
  12. Урок 12. 00:13:45
    Linear Regression with Scikit-Learn
  13. Урок 13. 00:08:54
    Five Steps Machine Learning Process
  14. Урок 14. 00:18:01
    Robust Regression
  15. Урок 15. 00:15:40
    Evaluate Regression Model Performance
  16. Урок 16. 00:19:45
    Multiple Regression 1
  17. Урок 17. 00:12:28
    Multiple Regression 2
  18. Урок 18. 00:06:54
    Regularized Regression
  19. Урок 19. 00:18:04
    Polynomial Regression
  20. Урок 20. 00:09:32
    Dealing with Non-linear Relationships
  21. Урок 21. 00:05:14
    Feature Importance
  22. Урок 22. 00:22:00
    Data Preprocessing
  23. Урок 23. 00:11:44
    Variance-Bias Trade Off
  24. Урок 24. 00:08:39
    Learning Curve
  25. Урок 25. 00:08:03
    Cross Validation
  26. Урок 26. 00:17:45
    CV Illustration
  27. Урок 27. 00:20:53
    Logistic Regression
  28. Урок 28. 00:05:05
    Introduction to Classification
  29. Урок 29. 00:14:57
    Understanding MNIST
  30. Урок 30. 00:09:30
    SGD
  31. Урок 31. 00:07:27
    Performance Measure and Stratified k-Fold
  32. Урок 32. 00:09:23
    Confusion Matrix
  33. Урок 33. 00:03:39
    Precision
  34. Урок 34. 00:03:19
    Recall
  35. Урок 35. 00:02:05
    f1
  36. Урок 36. 00:18:03
    Precision Recall Tradeoff
  37. Урок 37. 00:03:08
    Altering the Precision Recall Tradeoff
  38. Урок 38. 00:07:01
    ROC
  39. Урок 39. 00:06:58
    Support Vector Machine (SVM) Concepts
  40. Урок 40. 00:10:58
    Linear SVM Classification
  41. Урок 41. 00:05:04
    Polynomial Kernel
  42. Урок 42. 00:08:18
    Radial Basis Function
  43. Урок 43. 00:08:05
    Support Vector Regression
  44. Урок 44. 00:06:28
    Introduction to Decision Tree
  45. Урок 45. 00:06:39
    Training and Visualizing a Decision Tree
  46. Урок 46. 00:08:07
    Visualizing Boundary
  47. Урок 47. 00:05:09
    Tree Regression, Regularization and Over Fitting
  48. Урок 48. 00:04:50
    End to End Modeling
  49. Урок 49. 00:24:02
    Project HR
  50. Урок 50. 00:10:08
    Project HR with Google Colab
  51. Урок 51. 00:04:58
    Ensemble Learning Methods Introduction
  52. Урок 52. 00:20:59
    Bagging
  53. Урок 53. 00:10:14
    Random Forests and Extra-Trees
  54. Урок 54. 00:06:32
    AdaBoost
  55. Урок 55. 00:03:01
    Gradient Boosting Machine
  56. Урок 56. 00:02:46
    XGBoost Installation
  57. Урок 57. 00:04:41
    XGBoost
  58. Урок 58. 00:08:10
    Project HR - Human Resources Analytics
  59. Урок 59. 00:06:23
    Ensemble of Ensembles Part 1
  60. Урок 60. 00:04:54
    Ensemble of ensembles Part 2
  61. Урок 61. 00:09:55
    kNN Introduction
  62. Урок 62. 00:08:51
    Project Cancer Detection
  63. Урок 63. 00:20:13
    Project Cancer Detection Part 1
  64. Урок 64. 00:04:39
    Dimensionality Reduction Concept
  65. Урок 65. 00:07:18
    PCA Introduction
  66. Урок 66. 00:06:27
    Project Wine
  67. Урок 67. 00:05:35
    Kernel PCA
  68. Урок 68. 00:03:31
    Kernel PCA Demo
  69. Урок 69. 00:05:37
    LDA vs PCA
  70. Урок 70. 00:03:55
    Project Abalone
  71. Урок 71. 00:15:56
    Clustering
  72. Урок 72. 00:09:04
    k_Means Clustering
  73. Урок 73. 00:21:31
    Estimating Simple Function with Neural Networks
  74. Урок 74. 00:07:02
    Neural Network Architecture
  75. Урок 75. 00:21:20
    Motivational Example - Project MNIST
  76. Урок 76. 00:10:21
    Binary Classification Problem
  77. Урок 77. 00:11:00
    Natural Language Processing - Binary Classification
  78. Урок 78. 00:02:32
    Introduction to Neural Networks
  79. Урок 79. 00:04:22
    Differences between Classical Programming and Machine Learning
  80. Урок 80. 00:10:40
    Learning Representations
  81. Урок 81. 00:19:11
    What is Deep Learning
  82. Урок 82. 00:11:10
    Learning Neural Networks
  83. Урок 83. 00:02:52
    Why Now?
  84. Урок 84. 00:04:45
    Building Block Introduction
  85. Урок 85. 00:04:00
    Tensors
  86. Урок 86. 00:17:20
    Tensor Operations
  87. Урок 87. 00:11:56
    Gradient Based Optimization
  88. Урок 88. 00:04:29
    Getting Started with Neural Network and Deep Learning Libraries
  89. Урок 89. 00:10:08
    Categories of Machine Learning
  90. Урок 90. 00:15:23
    Over and Under Fitting
  91. Урок 91. 00:04:55
    Machine Learning Workflow
  92. Урок 92. 00:03:57
    Outline
  93. Урок 93. 00:08:15
    Neural Network Revision
  94. Урок 94. 00:07:32
    Motivational Example
  95. Урок 95. 00:14:16
    Visualizing CNN
  96. Урок 96. 00:05:55
    Understanding CNN
  97. Урок 97. 00:05:51
    Layer - Input
  98. Урок 98. 00:17:16
    Layer - Filter
  99. Урок 99. 00:06:42
    Activation Function
  100. Урок 100. 00:11:12
    Pooling, Flatten, Dense
  101. Урок 101. 00:13:52
    Training Your CNN 1
  102. Урок 102. 00:18:36
    Training Your CNN 2
  103. Урок 103. 00:01:26
    Loading Previously Trained Model
  104. Урок 104. 00:09:09
    Model Performance Comparison
  105. Урок 105. 00:02:48
    Data Augmentation
  106. Урок 106. 00:11:04
    Transfer Learning
  107. Урок 107. 00:11:16
    Feature Extraction
  108. Урок 108. 00:05:11
    State of the Art Tools