-
Урок 1. 00:02:33What Does the Course Cover?
-
Урок 2. 00:05:18Installing Applications and Creating Environment
-
Урок 3. 00:10:58Hello World
-
Урок 4. 00:12:33Iris Project 1: Working with Error Messages
-
Урок 5. 00:08:46Iris Project 2: Reading CSV Data into Memory
-
Урок 6. 00:08:44Iris Project 3: Loading data from Seaborn
-
Урок 7. 00:10:21Iris Project 4: Visualization
-
Урок 8. 00:09:12Scikit-Learn
-
Урок 9. 00:19:12EDA
-
Урок 10. 00:08:48Correlation Analysis and Feature Selection
-
Урок 11. 00:13:04Correlation Analysis and Feature Selection
-
Урок 12. 00:13:45Linear Regression with Scikit-Learn
-
Урок 13. 00:08:54Five Steps Machine Learning Process
-
Урок 14. 00:18:01Robust Regression
-
Урок 15. 00:15:40Evaluate Regression Model Performance
-
Урок 16. 00:19:45Multiple Regression 1
-
Урок 17. 00:12:28Multiple Regression 2
-
Урок 18. 00:06:54Regularized Regression
-
Урок 19. 00:18:04Polynomial Regression
-
Урок 20. 00:09:32Dealing with Non-linear Relationships
-
Урок 21. 00:05:14Feature Importance
-
Урок 22. 00:22:00Data Preprocessing
-
Урок 23. 00:11:44Variance-Bias Trade Off
-
Урок 24. 00:08:39Learning Curve
-
Урок 25. 00:08:03Cross Validation
-
Урок 26. 00:17:45CV Illustration
-
Урок 27. 00:20:53Logistic Regression
-
Урок 28. 00:05:05Introduction to Classification
-
Урок 29. 00:14:57Understanding MNIST
-
Урок 30. 00:09:30SGD
-
Урок 31. 00:07:27Performance Measure and Stratified k-Fold
-
Урок 32. 00:09:23Confusion Matrix
-
Урок 33. 00:03:39Precision
-
Урок 34. 00:03:19Recall
-
Урок 35. 00:02:05f1
-
Урок 36. 00:18:03Precision Recall Tradeoff
-
Урок 37. 00:03:08Altering the Precision Recall Tradeoff
-
Урок 38. 00:07:01ROC
-
Урок 39. 00:06:58Support Vector Machine (SVM) Concepts
-
Урок 40. 00:10:58Linear SVM Classification
-
Урок 41. 00:05:04Polynomial Kernel
-
Урок 42. 00:08:18Radial Basis Function
-
Урок 43. 00:08:05Support Vector Regression
-
Урок 44. 00:06:28Introduction to Decision Tree
-
Урок 45. 00:06:39Training and Visualizing a Decision Tree
-
Урок 46. 00:08:07Visualizing Boundary
-
Урок 47. 00:05:09Tree Regression, Regularization and Over Fitting
-
Урок 48. 00:04:50End to End Modeling
-
Урок 49. 00:24:02Project HR
-
Урок 50. 00:10:08Project HR with Google Colab
-
Урок 51. 00:04:58Ensemble Learning Methods Introduction
-
Урок 52. 00:20:59Bagging
-
Урок 53. 00:10:14Random Forests and Extra-Trees
-
Урок 54. 00:06:32AdaBoost
-
Урок 55. 00:03:01Gradient Boosting Machine
-
Урок 56. 00:02:46XGBoost Installation
-
Урок 57. 00:04:41XGBoost
-
Урок 58. 00:08:10Project HR - Human Resources Analytics
-
Урок 59. 00:06:23Ensemble of Ensembles Part 1
-
Урок 60. 00:04:54Ensemble of ensembles Part 2
-
Урок 61. 00:09:55kNN Introduction
-
Урок 62. 00:08:51Project Cancer Detection
-
Урок 63. 00:20:13Project Cancer Detection Part 1
-
Урок 64. 00:04:39Dimensionality Reduction Concept
-
Урок 65. 00:07:18PCA Introduction
-
Урок 66. 00:06:27Project Wine
-
Урок 67. 00:05:35Kernel PCA
-
Урок 68. 00:03:31Kernel PCA Demo
-
Урок 69. 00:05:37LDA vs PCA
-
Урок 70. 00:03:55Project Abalone
-
Урок 71. 00:15:56Clustering
-
Урок 72. 00:09:04k_Means Clustering
-
Урок 73. 00:21:31Estimating Simple Function with Neural Networks
-
Урок 74. 00:07:02Neural Network Architecture
-
Урок 75. 00:21:20Motivational Example - Project MNIST
-
Урок 76. 00:10:21Binary Classification Problem
-
Урок 77. 00:11:00Natural Language Processing - Binary Classification
-
Урок 78. 00:02:32Introduction to Neural Networks
-
Урок 79. 00:04:22Differences between Classical Programming and Machine Learning
-
Урок 80. 00:10:40Learning Representations
-
Урок 81. 00:19:11What is Deep Learning
-
Урок 82. 00:11:10Learning Neural Networks
-
Урок 83. 00:02:52Why Now?
-
Урок 84. 00:04:45Building Block Introduction
-
Урок 85. 00:04:00Tensors
-
Урок 86. 00:17:20Tensor Operations
-
Урок 87. 00:11:56Gradient Based Optimization
-
Урок 88. 00:04:29Getting Started with Neural Network and Deep Learning Libraries
-
Урок 89. 00:10:08Categories of Machine Learning
-
Урок 90. 00:15:23Over and Under Fitting
-
Урок 91. 00:04:55Machine Learning Workflow
-
Урок 92. 00:03:57Outline
-
Урок 93. 00:08:15Neural Network Revision
-
Урок 94. 00:07:32Motivational Example
-
Урок 95. 00:14:16Visualizing CNN
-
Урок 96. 00:05:55Understanding CNN
-
Урок 97. 00:05:51Layer - Input
-
Урок 98. 00:17:16Layer - Filter
-
Урок 99. 00:06:42Activation Function
-
Урок 100. 00:11:12Pooling, Flatten, Dense
-
Урок 101. 00:13:52Training Your CNN 1
-
Урок 102. 00:18:36Training Your CNN 2
-
Урок 103. 00:01:26Loading Previously Trained Model
-
Урок 104. 00:09:09Model Performance Comparison
-
Урок 105. 00:02:48Data Augmentation
-
Урок 106. 00:11:04Transfer Learning
-
Урок 107. 00:11:16Feature Extraction
-
Урок 108. 00:05:11State of the Art Tools
- Категории
- Источники
- Все курсы
- Разделы
- Книги