Этот материал находится в платной подписке. Оформи премиум подписку и смотри или слушай Python for Business Data Analytics & Intelligence, а также все другие курсы, прямо сейчас!
Премиум
  1. Урок 1. 00:02:35
    Python for Business Analytics & Intelligence
  2. Урок 2. 00:01:56
    Introduction
  3. Урок 3. 00:07:08
    Setting up the Course Material
  4. Урок 4. 00:05:01
    The Modern Day Business Analyst
  5. Урок 5. 00:01:07
    Basic Statistics - Game Plan
  6. Урок 6. 00:01:57
    Arithmetic Mean
  7. Урок 7. 00:00:59
    CASE STUDY: Moneyball (Briefing)
  8. Урок 8. 00:08:04
    Python - Directory, Libraries and Data
  9. Урок 9. 00:09:17
    Python - Mean
  10. Урок 10. 00:02:21
    EXERCISE: Python - Mean
  11. Урок 11. 00:02:42
    Median and Mode
  12. Урок 12. 00:05:02
    Python - Median
  13. Урок 13. 00:02:58
    EXERCISE: Python - Median
  14. Урок 14. 00:03:04
    Python - Mode
  15. Урок 15. 00:01:37
    EXERCISE: Python - Mode
  16. Урок 16. 00:04:17
    Correlation
  17. Урок 17. 00:08:42
    Python - Correlation
  18. Урок 18. 00:03:34
    EXERCISE: Python - Correlation
  19. Урок 19. 00:02:08
    Standard Deviation
  20. Урок 20. 00:02:24
    Python - Standard Deviation
  21. Урок 21. 00:01:05
    EXERCISE: Python - Standard Deviation
  22. Урок 22. 00:03:57
    CASE STUDY: Moneyball
  23. Урок 23. 00:00:47
    Intermediary Statistics - Game Plan
  24. Урок 24. 00:03:01
    Normal Distribution
  25. Урок 25. 00:02:23
    CASE STUDY: Wine Quality (Briefing)
  26. Урок 26. 00:05:01
    Python - Preparing Script and Loading Data
  27. Урок 27. 00:09:29
    Python - Normal Distribution Visualization
  28. Урок 28. 00:05:42
    EXERCISE: Python - Normal Distribution
  29. Урок 29. 00:05:34
    P-Value
  30. Урок 30. 00:01:52
    Shapiro-Wilks Test
  31. Урок 31. 00:07:43
    Python - Shapiro-Wilks Test
  32. Урок 32. 00:02:50
    EXERCISE: Python - Shapiro-Wilks
  33. Урок 33. 00:02:37
    Standard Error of the Mean
  34. Урок 34. 00:04:25
    Python - Standard Error
  35. Урок 35. 00:02:11
    EXERCISE: Python - Standard Error
  36. Урок 36. 00:02:41
    Z-Score
  37. Урок 37. 00:05:49
    Confidence Interval
  38. Урок 38. 00:06:24
    Python - Confidence Interval
  39. Урок 39. 00:02:20
    EXERCISE: Python - Confidence Interval
  40. Урок 40. 00:02:18
    T-test
  41. Урок 41. 00:00:40
    CASE STUDY: Remote Work Predictions (Briefing)
  42. Урок 42. 00:10:21
    Python - T-test
  43. Урок 43. 00:05:23
    EXERCISE: Python - T-test
  44. Урок 44. 00:02:29
    Chi-square test
  45. Урок 45. 00:07:30
    Python - Chi-square test
  46. Урок 46. 00:03:15
    EXERCISE: Python - Chi-square
  47. Урок 47. 00:03:21
    Powerposing and p-hacking
  48. Урок 48. 00:01:28
    Linear Regression - Game Plan
  49. Урок 49. 00:00:58
    CASE STUDY: Diamonds (Briefing)
  50. Урок 50. 00:05:12
    Linear Regression
  51. Урок 51. 00:04:37
    Python - Preparing Script and Loading Data
  52. Урок 52. 00:01:48
    Python - Isolate X and Y
  53. Урок 53. 00:02:44
    Python - Adding Constant
  54. Урок 54. 00:03:37
    Linear Regression Output
  55. Урок 55. 00:03:21
    Python - Linear Regression Model and Summary
  56. Урок 56. 00:04:24
    Python - Plotting Regression
  57. Урок 57. 00:03:10
    Dummy Variable Trap
  58. Урок 58. 00:03:36
    Python - Dummy Variable
  59. Урок 59. 00:05:52
    EXERCISE: Python - Linear Regression
  60. Урок 60. 00:01:35
    Multilinear Regression - Game Plan
  61. Урок 61. 00:01:46
    The Concept of Multilinear Regression
  62. Урок 62. 00:00:46
    CASE STUDY: Professors' Salary (Briefing)
  63. Урок 63. 00:05:06
    Python - Preparing Script and Loading Data
  64. Урок 64. 00:03:00
    Python - Summary Statistics
  65. Урок 65. 00:02:44
    Outliers
  66. Урок 66. 00:04:55
    Python - Plotting Continuous Variables
  67. Урок 67. 00:02:52
    Python - Correlation Matrix
  68. Урок 68. 00:04:31
    Python - Categorical Variables
  69. Урок 69. 00:04:44
    Python - For Loop
  70. Урок 70. 00:03:10
    Python - Creating Dummy Variables
  71. Урок 71. 00:03:29
    Python - Isolate X and Y
  72. Урок 72. 00:01:27
    Python - Adding Constant
  73. Урок 73. 00:01:33
    Under and Over Fitting
  74. Урок 74. 00:01:04
    Training and Test Set
  75. Урок 75. 00:02:43
    Python - Train and Test Split
  76. Урок 76. 00:05:02
    Python - Multilinear Regression
  77. Урок 77. 00:03:20
    Accuracy KPIs (Key Performance Indicators)
  78. Урок 78. 00:01:32
    Python - Model Predictions
  79. Урок 79. 00:05:37
    Python - Accuracy Assessment
  80. Урок 80. 00:05:09
    CHALLENGE: Introduction
  81. Урок 81. 00:16:00
    CHALLENGE: Solutions
  82. Урок 82. 00:01:14
    Logistic Regression - Game Plan
  83. Урок 83. 00:01:01
    CASE STUDY: Spam Emails (Briefing)
  84. Урок 84. 00:02:07
    Logistic Regression
  85. Урок 85. 00:04:17
    Python - Preparing Script and Loading Data
  86. Урок 86. 00:03:20
    Python - Summary Statistics
  87. Урок 87. 00:07:03
    Python - Histogram and Outlier Removal
  88. Урок 88. 00:02:33
    Python - Correlation Matrix
  89. Урок 89. 00:02:40
    Python - Transforming Dependent Variable
  90. Урок 90. 00:02:10
    Python - Prepare X and Y
  91. Урок 91. 00:02:43
    Python - Training and Test Set
  92. Урок 92. 00:02:41
    How to Read Logistic Regression Coefficients
  93. Урок 93. 00:02:20
    Python - Logistic Regression
  94. Урок 94. 00:08:31
    Python - Function to Read Coefficients
  95. Урок 95. 00:03:07
    Python - Predictions
  96. Урок 96. 00:06:18
    Confusion Matrix
  97. Урок 97. 00:05:26
    Python - Confusion Matrix
  98. Урок 98. 00:07:06
    Python - Manual Accuracy Assessment
  99. Урок 99. 00:02:46
    Python - Classification Report
  100. Урок 100. 00:04:50
    CHALLENGE: Introduction
  101. Урок 101. 00:13:40
    CHALLENGE: Solutions
  102. Урок 102. 00:04:21
    Why Econometrics and Causal Inference
  103. Урок 103. 00:01:21
    Google Causal Impact - Game Plan
  104. Урок 104. 00:01:31
    Time Series Data
  105. Урок 105. 00:02:29
    CASE STUDY: Bitcoin Pricing (Briefing)
  106. Урок 106. 00:02:22
    Difference-in-Differences Framework
  107. Урок 107. 00:02:21
    Causal Impact Step-by-Step
  108. Урок 108. 00:03:55
    Python - Installing and Importing Libraries
  109. Урок 109. 00:03:35
    Python - Defining Dates
  110. Урок 110. 00:05:13
    Python - Bitcoin Price loading
  111. Урок 111. 00:02:55
    Assumptions
  112. Урок 112. 00:04:00
    Python - Load Control Groups
  113. Урок 113. 00:06:01
    Python - Preparing DataFrame
  114. Урок 114. 00:02:43
    Python - Preparing for Correlation Matrix
  115. Урок 115. 00:04:17
    Correlation Recap and Stationarity
  116. Урок 116. 00:07:07
    Python - Stationarity
  117. Урок 117. 00:03:23
    Python - Correlation
  118. Урок 118. 00:02:42
    Python - Google Causal Impact Setup
  119. Урок 119. 00:03:24
    Python - Google Causal Impact
  120. Урок 120. 00:04:18
    Interpretation of Results
  121. Урок 121. 00:05:05
    Python - Impact Results
  122. Урок 122. 00:07:15
    CHALLENGE: Introduction
  123. Урок 123. 00:13:14
    CHALLENGE: Solutions
  124. Урок 124. 00:02:51
    Matching - Game Plan
  125. Урок 125. 00:02:52
    Matching
  126. Урок 126. 00:01:01
    CASE STUDY: Catholic Schools & Standardized Tests (Briefing)
  127. Урок 127. 00:02:54
    Python - Directory and Libraries
  128. Урок 128. 00:02:25
    Python - Loading Data
  129. Урок 129. 00:02:17
    Unconfoundedness
  130. Урок 130. 00:02:43
    Python - Comparing Means
  131. Урок 131. 00:04:10
    Python - T-Test
  132. Урок 132. 00:04:39
    Python - T-Test Loop
  133. Урок 133. 00:03:28
    Python - Chi-square Test
  134. Урок 134. 00:04:27
    Python - Chi-square Loop
  135. Урок 135. 00:01:50
    Python - Other Variables
  136. Урок 136. 00:01:41
    The Curse of Dimensionality
  137. Урок 137. 00:07:00
    Python - Race Variable Transformation
  138. Урок 138. 00:05:31
    Python - Education Variables
  139. Урок 139. 00:03:32
    Python - Cleaning and Preparing Dataset
  140. Урок 140. 00:04:05
    Common Support Region
  141. Урок 141. 00:07:23
    Python - Logistic Regression and Debugging
  142. Урок 142. 00:05:40
    Python - Preparing for Common Support Region
  143. Урок 143. 00:01:42
    Python - Common Support Region Visualization
  144. Урок 144. 00:04:52
    Python - Matching
  145. Урок 145. 00:02:14
    Robustness Checks
  146. Урок 146. 00:07:01
    Python - Robustness Check - Repeated experiments
  147. Урок 147. 00:01:56
    Python - Outcome Visualization
  148. Урок 148. 00:03:39
    Python - Robustness Check - Removing 1 confounder
  149. Урок 149. 00:05:26
    CHALLENGE: Introduction
  150. Урок 150. 00:14:04
    CHALLENGE: Solutions
  151. Урок 151. 00:02:42
    My Experience with Matching
  152. Урок 152. 00:00:46
    RFM - Game Plan
  153. Урок 153. 00:02:53
    Value Based Segmentation
  154. Урок 154. 00:04:54
    RFM Model
  155. Урок 155. 00:00:54
    CASE STUDY: Online Shopping (Briefing)
  156. Урок 156. 00:02:18
    Python - Directory and Libraries
  157. Урок 157. 00:02:30
    Python - Loading Data
  158. Урок 158. 00:01:46
    Python - Creating Sales Variable
  159. Урок 159. 00:03:34
    Python - Date Variable
  160. Урок 160. 00:03:50
    Python - Customer Level Aggregation
  161. Урок 161. 00:01:24
    Python - Monetary Variable
  162. Урок 162. 00:02:53
    Python - Tidying up Dataframe
  163. Урок 163. 00:06:35
    Python - Quartiles
  164. Урок 164. 00:01:52
    Python - RFM Score
  165. Урок 165. 00:04:42
    Python - RFM Function
  166. Урок 166. 00:02:10
    Python - Applying RFM Function
  167. Урок 167. 00:04:30
    Python - Results Summary
  168. Урок 168. 00:03:32
    CHALLENGE: Introduction
  169. Урок 169. 00:12:17
    CHALLENGE: Solutions
  170. Урок 170. 00:01:11
    Gaussian Mixture - Game Plan
  171. Урок 171. 00:02:10
    Clustering
  172. Урок 172. 00:03:58
    Gaussian Mixture Model
  173. Урок 173. 00:00:54
    CASE STUDY: Credit Cards #1 (Briefing)
  174. Урок 174. 00:02:12
    Python - Directory and Data
  175. Урок 175. 00:01:51
    Python - Load Data
  176. Урок 176. 00:01:22
    Python - Transform Character variables
  177. Урок 177. 00:02:16
    AIC and BIC
  178. Урок 178. 00:06:25
    Python - Optimal Number of Clusters
  179. Урок 179. 00:01:12
    Python - Gaussian Mixture Model
  180. Урок 180. 00:02:51
    Python - Cluster Prediction and Assignment
  181. Урок 181. 00:07:47
    Python - Interpretation
  182. Урок 182. 00:04:36
    CHALLENGE: Introduction
  183. Урок 183. 00:18:05
    CHALLENGE: Solutions
  184. Урок 184. 00:03:16
    My Experience with Segmentation
  185. Урок 185. 00:01:06
    Random Forest - Game Plan
  186. Урок 186. 00:02:17
    Ensemble Learning and Random Forest
  187. Урок 187. 00:04:20
    How Decision Trees Work
  188. Урок 188. 00:00:38
    CASE STUDY: Credit Cards #2 (Briefing)
  189. Урок 189. 00:02:03
    Python - Directory and Libraries
  190. Урок 190. 00:01:51
    Python - Loading Data
  191. Урок 191. 00:01:44
    Python - Transform Object into Numerical Variables
  192. Урок 192. 00:02:22
    Python - Summary Statistics
  193. Урок 193. 00:02:31
    Random Forest Quirks
  194. Урок 194. 00:01:33
    Python - Isolate X and Y
  195. Урок 195. 00:03:41
    Python - Training and Test Set
  196. Урок 196. 00:03:00
    Python - Random Forest Model
  197. Урок 197. 00:01:19
    Python - Predictions
  198. Урок 198. 00:03:45
    Python - Classification Report and F1 score
  199. Урок 199. 00:04:23
    Python - Feature Importance
  200. Урок 200. 00:02:46
    Parameter Tuning
  201. Урок 201. 00:03:15
    Python - Parameter Grid
  202. Урок 202. 00:07:11
    Python - Parameter Tuning
  203. Урок 203. 00:04:25
    CHALLENGE: Introduction
  204. Урок 204. 00:08:30
    CHALLENGE: Solutions (Part 1)
  205. Урок 205. 00:09:41
    CHALLENGE: Solutions (Part 2)
  206. Урок 206. 00:01:21
    Facebook Prophet - Game Plan
  207. Урок 207. 00:02:26
    Structural Time Series
  208. Урок 208. 00:03:38
    Facebook Prophet
  209. Урок 209. 00:00:52
    CASE STUDY: Wikipedia (Briefing)
  210. Урок 210. 00:02:06
    Python - Directory and Libraries
  211. Урок 211. 00:02:35
    Python - Loading Data
  212. Урок 212. 00:02:49
    Python - Transforming Date Variable
  213. Урок 213. 00:01:32
    Python - Renaming Variables
  214. Урок 214. 00:02:11
    Dynamic Holidays
  215. Урок 215. 00:05:17
    Python - Easter Holidays
  216. Урок 216. 00:02:51
    Python - Black Friday
  217. Урок 217. 00:02:34
    Python - Combining Events and Preparing Dataframe
  218. Урок 218. 00:02:13
    Training and Test Set
  219. Урок 219. 00:03:18
    Python - Training and Test Set
  220. Урок 220. 00:02:14
    Facebook Prophet Parameters
  221. Урок 221. 00:02:38
    Additive vs. Multiplicative Seasonality
  222. Урок 222. 00:04:46
    Facebook Prophet Model
  223. Урок 223. 00:01:50
    Python - Regressor Coefficients
  224. Урок 224. 00:04:38
    Python - Future Dataframe
  225. Урок 225. 00:02:20
    Python - Forecasting
  226. Урок 226. 00:03:42
    Python - Accuracy Assessment
  227. Урок 227. 00:05:41
    Python - Visualization
  228. Урок 228. 00:01:08
    Cross-validation
  229. Урок 229. 00:08:00
    Python - Cross-validation
  230. Урок 230. 00:01:23
    Parameters to tune
  231. Урок 231. 00:04:04
    Python - Parameter Grid
  232. Урок 232. 00:07:29
    Python - Parameter Tuning
  233. Урок 233. 00:04:48
    CHALLENGE: Introduction
  234. Урок 234. 00:09:18
    CHALLENGE: Solutions (Part 1)
  235. Урок 235. 00:11:08
    CHALLENGE: Solutions (Part 2)
  236. Урок 236. 00:08:09
    CHALLENGE: Solutions (Part 3)
  237. Урок 237. 00:04:39
    Forecasting at Uber
  238. Урок 238. 00:01:18
    Thank You!