-
Урок 1.
00:03:55
What does the course cover?
-
Урок 2.
00:04:03
Understanding the difference between a population and a sample
-
Урок 3.
00:04:34
The various types of data we can work with
-
Урок 4.
00:03:44
Levels of measurement
-
Урок 5.
00:04:53
Categorical variables. Visualization techniques for categorical variables
-
Урок 6.
00:03:10
Numerical variables. Using a frequency distribution table
-
Урок 7.
00:02:15
Histogram charts
-
Урок 8.
00:04:45
Cross tables and scatter plots
-
Урок 9.
00:04:21
The main measures of central tendency: mean, median and mode
-
Урок 10.
00:02:38
Measuring skewness
-
Урок 11.
00:05:56
Measuring how data is spread out: calculating variance
-
Урок 12.
00:04:41
Standard deviation and coefficient of variation
-
Урок 13.
00:03:24
Calculating and understanding covariance
-
Урок 14.
00:03:18
The correlation coefficient
-
Урок 15.
00:16:16
Practical example
-
Урок 16.
00:01:01
Introduction to inferential statistics
-
Урок 17.
00:04:34
What is a distribution?
-
Урок 18.
00:03:55
The Normal distribution
-
Урок 19.
00:03:31
The standard normal distribution
-
Урок 20.
00:04:21
Understanding the central limit theorem
-
Урок 21.
00:01:28
Standard error
-
Урок 22.
00:03:08
Working with estimators and estimates
-
Урок 23.
00:02:42
Confidence intervals - an invaluable tool for decision making
-
Урок 24.
00:08:02
Calculating confidence intervals within a population with a known variance
-
Урок 25.
00:04:39
Confidence interval clarifications
-
Урок 26.
00:03:23
Student's T distribution
-
Урок 27.
00:04:37
Calculating confidence intervals within a population with an unknown variance
-
Урок 28.
00:04:53
What is a margin of error and why is it important in Statistics?
-
Урок 29.
00:06:05
Calculating confidence intervals for two means with dependent samples
-
Урок 30.
00:04:32
Calculating confidence intervals for two means with independent samples (part 1)
-
Урок 31.
00:03:58
Calculating confidence intervals for two means with independent samples (part 2)
-
Урок 32.
00:01:28
Calculating confidence intervals for two means with independent samples (part 3)
-
Урок 33.
00:10:07
Practical example: inferential statistics
-
Урок 34.
00:05:53
The null and the alternative hypothesis
-
Урок 35.
00:07:06
Establishing a rejection region and a significance level
-
Урок 36.
00:04:15
Type I error vs Type II error
-
Урок 37.
00:06:35
Test for the mean. Population variance known
-
Урок 38.
00:04:14
What is the p-value and why is it one of the most useful tools for statisticians
-
Урок 39.
00:04:49
Test for the mean. Population variance unknown
-
Урок 40.
00:05:19
Test for the mean. Dependent samples
-
Урок 41.
00:04:23
Test for the mean. Independent samples (Part 1)
-
Урок 42.
00:04:27
Test for the mean. Independent samples (Part 2)
-
Урок 43.
00:07:17
Practical example: hypothesis testing
-
Урок 44.
00:01:03
Introduction to regression analysis
-
Урок 45.
00:04:13
Correlation and causation
-
Урок 46.
00:05:51
The linear regression model made easy
-
Урок 47.
00:01:44
What is the difference between correlation and regression?
-
Урок 48.
00:01:26
A geometrical representation of the linear regression model
-
Урок 49.
00:05:46
A practical example - Reinforced learning
-
Урок 50.
00:03:38
Decomposing the linear regression model - understanding its nuts and bolts
-
Урок 51.
00:05:25
What is R-squared and how does it help us?
-
Урок 52.
00:02:24
The ordinary least squares setting and its practical applications
-
Урок 53.
00:04:55
Studying regression tables
-
Урок 54.
00:02:56
The multiple linear regression model
-
Урок 55.
00:05:25
The adjusted R-squared
-
Урок 56.
00:02:02
What does the F-statistic show us and why do we need to understand it?
-
Урок 57.
00:02:22
OLS assumptions
-
Урок 58.
00:01:51
A1. Linearity
-
Урок 59.
00:04:10
A2. No endogeneity
-
Урок 60.
00:05:48
A3. Normality and homoscedasticity
-
Урок 61.
00:03:15
A4. No autocorrelation
-
Урок 62.
00:03:27
A5. No multicollinearity
-
Урок 63.
00:05:04
Dummy variables
-
Урок 64.
00:14:10
Practical example: regression analysis