Этот материал находится в платной подписке. Оформи премиум подписку и смотри или слушай Master Data Structure & Algorithms & Crack the Coding Interview, а также все другие курсы, прямо сейчас!
Купить сейчас
  • Урок 1. 00:06:27
    Why every developer needs to learn Data Structures & Algorithms
  • Урок 2. 00:06:14
    Introduction to Data Structures
  • Урок 3. 00:07:54
    Introduction to Algorithms
  • Урок 4. 00:07:29
    How to MASTER Data Structures & Algorithms
  • Урок 5. 00:10:41
    How to Solve Coding Problems - My 6-Step Framework
  • Урок 6. 00:09:46
    Applying the framework: TwoSum
  • Урок 7. 00:01:40
    What this Bonus Module is about
  • Урок 8. 00:13:45
    1 - Writing Our First Python Program
  • Урок 9. 00:11:49
    2 - Python variables (Building Block 1)
  • Урок 10. 00:13:21
    3 - Errors (when things go wrong...)
  • Урок 11. 00:12:28
    4 - Basic Python datatypes - (Building Block 2)
  • Урок 12. 00:17:57
    5 - Basic Python datatypes 2
  • Урок 13. 00:18:04
    6 - Making our datatypes more POWERFUL - Methods
  • Урок 14. 00:23:23
    7 - Python Functions (Building Block 3)
  • Урок 15. 00:17:01
    8 - The flow of a program (Building Block 4)
  • Урок 16. 00:17:19
    9 - Compound data types
  • Урок 17. 00:07:45
    11 - Error handling - how to prevent crashes...
  • Урок 18. 00:16:35
    12 - Libraries - standing on the shoulders of giants
  • Урок 19. 00:04:01
    Modeling the real world using code - Object-Oriented Programming Introduction
  • Урок 20. 00:10:45
    OOP-1 - Classes & Objects - Let's make some cookies!
  • Урок 21. 00:07:13
    OOP-2: Objects & Classes in Python - I have been lying to you..
  • Урок 22. 00:05:50
    OOP-3: Creating our Own Classes
  • Урок 23. 00:06:27
    OOP-4: Creating our Own Classes 2
  • Урок 24. 00:10:43
    OOP-5: Private attributes & Properties: Creating Secrets (Advanced)
  • Урок 25. 00:02:07
    Module Overview - How do developers analyze algorithms?
  • Урок 26. 00:03:42
    Introduction to Efficiency
  • Урок 27. 00:12:23
    Big O notation - What makes an algorithm "fast"?
  • Урок 28. 00:08:02
    Good vs bad runtime - O(n) & O(n^2)
  • Урок 29. 00:04:46
    Best runtime - O(1)
  • Урок 30. 00:08:03
    Logarithmic & linearithmic time complexity:O(logn) & O(nlogn)
  • Урок 31. 00:07:38
    (Advanced) Terrible Time Complexities! - O(2^n), O(n!) and beyond
  • Урок 32. 00:04:24
    Multiple inputs
  • Урок 33. 00:05:08
    Space complexity
  • Урок 34. 00:06:44
    Data Structures Introduction
  • Урок 35. 00:07:13
    The Computer's Memory
  • Урок 36. 00:04:15
    Lists/Arrays 1
  • Урок 37. 00:06:29
    Lists/Arrays 2 - Big O
  • Урок 38. 00:05:56
    (advanced) Dynamic Lists & list memory allocation
  • Урок 39. 00:04:44
    List Exercise 1 walkthrough
  • Урок 40. 00:05:26
    List exercise 2 walkthrough
  • Урок 41. 00:02:18
    Linked Lists Introduction - What is a Linked List?
  • Урок 42. 00:11:06
    Linked Lists Implementation in Python 1
  • Урок 43. 00:06:00
    Linked List implementation in Python 2
  • Урок 44. 00:04:48
    Linked List Big O
  • Урок 45. 00:03:11
    List vs Linked List
  • Урок 46. 00:05:57
    Linked List Exercise 1: Reverse a Linked List
  • Урок 47. 00:05:47
    Linked List Exercise 2: Palindrome
  • Урок 48. 00:03:25
    Stacks & Queues Introduction
  • Урок 49. 00:03:42
    Stacks & Queues in Memory
  • Урок 50. 00:06:18
    Stack Implementation in Python
  • Урок 51. 00:02:03
    Queue Implementation in Python
  • Урок 52. 00:01:37
    Stacks Big O
  • Урок 53. 00:01:50
    Queue Big O
  • Урок 54. 00:07:57
    Stack exercise walkthrough
  • Урок 55. 00:05:20
    Queue exercise walkthrough
  • Урок 56. 00:03:24
    Trees Introduction
  • Урок 57. 00:06:25
    Binary Search Trees
  • Урок 58. 00:03:58
    Binary Search Tree Implementation 1 - Insertion
  • Урок 59. 00:11:00
    Binary Search Tree Implementation 2 - Searching
  • Урок 60. 00:01:39
    Binary Search Tree Implementation 3 - Deletion
  • Урок 61. 00:04:08
    Heaps
  • Урок 62. 00:13:57
    Heap Implementation 1
  • Урок 63. 00:05:42
    Heap Implementation 2
  • Урок 64. 00:04:38
    Graphs Introduction
  • Урок 65. 00:05:41
    Undirected Graph Implementation
  • Урок 66. 00:03:35
    Different Types of Graphs
  • Урок 67. 00:02:02
    Directed Graph Implementation
  • Урок 68. 00:01:31
    Weighted (Directed) Graph Implementation
  • Урок 69. 00:03:42
    Hash Maps Introduction
  • Урок 70. 00:08:15
    Hash Maps Behind the Scenes
  • Урок 71. 00:02:56
    Hash Maps Big O
  • Урок 72. 00:08:36
    Hash Map Implementation from First Principles
  • Урок 73. 00:03:44
    Hash Map Exercise Walkthrough
  • Урок 74. 00:03:56
    Algorithms introduction
  • Урок 75. 00:12:00
    List Algorithms
  • Урок 76. 00:02:44
    Recursion introduction
  • Урок 77. 00:06:42
    The Call Stack & Stack Overflow
  • Урок 78. 00:07:26
    How to use recursion (step-by-step)
  • Урок 79. 00:05:52
    Recursion exercise 1 walkthrough - Fibonacci
  • Урок 80. 00:03:48
    Recursion exercise 2 walkthrough - Palindrome
  • Урок 81. 00:05:32
    Recursive vs iterative programming
  • Урок 82. 00:04:33
    Sorting introduction
  • Урок 83. 00:04:41
    Insertion Sort
  • Урок 84. 00:07:09
    Insertion Sort Implementation
  • Урок 85. 00:03:11
    Bubble Sort
  • Урок 86. 00:03:54
    Bubble Sort Implementation
  • Урок 87. 00:08:10
    Merge Sort
  • Урок 88. 00:10:56
    Merge Sort Implementation
  • Урок 89. 00:05:12
    Quick Sort
  • Урок 90. 00:06:13
    Quick Sort Implementation
  • Урок 91. 00:03:40
    Which sorting algorithm should you use?
  • Урок 92. 00:02:06
    Graph Searching Introduction
  • Урок 93. 00:08:18
    Breadth-First Search (BFS)
  • Урок 94. 00:07:20
    BFS Implementation
  • Урок 95. 00:01:47
    Depth-First Search (DFS)
  • Урок 96. 00:06:37
    DFS Implementation
  • Урок 97. 00:03:57
    DFS vs BFS
  • Урок 98. 00:07:44
    Dijkstra's Algorithm
  • Урок 99. 00:05:50
    Dijkstra's Algorithm Implementation
  • Урок 100. 00:06:26
    Dynamic Programming Introduction
  • Урок 101. 00:03:31
    Dynamic programming exercise walkthrough: Fibonacci
  • Урок 102. 00:04:47
    When To Use Dynamic Programming? (My Framework)
  • Урок 103. 00:04:04
    Dynamic programming practical examples from my startup
  • Урок 104. 00:05:13
    Two Pointers
  • Урок 105. 00:05:52
    Two Pointers 2
  • Урок 106. 00:10:39
    Two Pointers 3
  • Урок 107. 00:03:03
    Sliding Window
  • Урок 108. 00:06:36
    Sliding Window 2
  • Урок 109. 00:04:32
    Fast and Slow Pointers (Tortoise and Hare)
  • Урок 110. 00:04:00
    Fast and Slow Pointers 2
  • Урок 111. 00:03:04
    Fast and Slow Pointers 3
  • Урок 112. 00:05:31
    Backtracking
  • Урок 113. 00:08:54
    Backtracking 2
  • Урок 114. 00:09:54
    Divide and Conquer
  • Урок 115. 00:07:23
    Divide and Conquer 2
  • Урок 116. 00:03:20
    Prefix sum
  • Урок 117. 00:06:43
    Prefix sum 2
  • Урок 118. 00:06:43
    Prefix sum 3
  • Урок 119. 00:02:42
    Note on this module
  • Урок 120. 00:07:28
    How to Apply for Jobs and Get More Interviews
  • Урок 121. 00:07:02
    How to Leverage LinkedIn to Get Interviews
  • Урок 122. 00:12:49
    The Top Non-Technical Skills to get Hired
  • Урок 123. 00:11:26
    How to Crack the Coding Interview