-
Урок 1.
00:05:04
Course Introduction
-
Урок 2.
00:02:13
Course Material
-
Урок 3.
00:05:16
Why Forecasting Matters
-
Урок 4.
00:01:05
Game Plan
-
Урок 5.
00:02:35
TIme Series Data
-
Урок 6.
00:01:44
Case Study Briefing
-
Урок 7.
00:04:43
Python - Directory and Libraries
-
Урок 8.
00:02:52
Python - Loading the Data
-
Урок 9.
00:01:30
Python - Renaming Variable
-
Урок 10.
00:02:34
Python - Summary Statistics
-
Урок 11.
00:02:41
Additive vs. Multiplicative Seasonality
-
Урок 12.
00:08:19
Python - Seasonal Decomposition
-
Урок 13.
00:05:08
Python - Seasonal Graphs
-
Урок 14.
00:05:32
Python - Visualization - Basic Plot
-
Урок 15.
00:05:59
Python - Visualization - Customization
-
Урок 16.
00:06:11
Python - Visualization -Adding Events
-
Урок 17.
00:02:19
Python - Correlation
-
Урок 18.
00:02:02
Auto-Correlation Plots
-
Урок 19.
00:03:21
Python - Auto-Correlation Plot
-
Урок 20.
00:02:31
Python - Useful Commands Template
-
Урок 21.
00:01:37
Facebook Prophet Game Plan
-
Урок 22.
00:04:43
Structural Time Series and Facebook Prophet
-
Урок 23.
00:03:51
Python - Preparing the Script
-
Урок 24.
00:02:05
Python - Date Variable
-
Урок 25.
00:04:09
Python - Easter
-
Урок 26.
00:01:25
Python - Thanksgiving
-
Урок 27.
00:02:33
Python - Wrapping Up the Events
-
Урок 28.
00:02:05
Facebook Prophet Parameters
-
Урок 29.
00:03:50
Facebook Prophet Model
-
Урок 30.
00:03:49
Cross-Validation
-
Урок 31.
00:05:30
Python - Cross-Validation
-
Урок 32.
00:04:38
Assessing Model Errors
-
Урок 33.
00:07:53
Python - Cross-Validation Performance and Plot
-
Урок 34.
00:01:51
Parameter Tuning
-
Урок 35.
00:04:48
Python - Parameter Grid
-
Урок 36.
00:06:57
Python - Parameter Tuning
-
Урок 37.
00:06:56
Python - Best Parameters and Exporting
-
Урок 38.
00:05:07
Python - Building Script
-
Урок 39.
00:05:55
Python - Preparing Data Sets
-
Урок 40.
00:07:05
Python - Final Facebook Prophet Model
-
Урок 41.
00:07:37
Python - Forecasting
-
Урок 42.
00:05:16
Python - Exporting Forecast
-
Урок 43.
00:01:41
Facebook Prophet Pros and Cons
-
Урок 44.
00:01:53
SARIMAX Game Plan
-
Урок 45.
00:03:06
ARIMA
-
Урок 46.
00:03:30
Python - Preparing Script
-
Урок 47.
00:01:55
Auto-Regressive
-
Урок 48.
00:04:34
Integrated
-
Урок 49.
00:05:45
Python - Stationarity and Differencing
-
Урок 50.
00:02:35
Moving Average Component
-
Урок 51.
00:03:16
Optimization Factors
-
Урок 52.
00:05:12
Python - SARIMAX Model
-
Урок 53.
00:08:19
Python - Cross-Validation
-
Урок 54.
00:03:33
Python - Parameter Grid
-
Урок 55.
00:04:15
Python - Parameter Tuning
-
Урок 56.
00:04:27
Python - Exporting Best Parameters
-
Урок 57.
00:03:28
Python - Preparing the Script
-
Урок 58.
00:02:57
Python - Preparing Data
-
Урок 59.
00:04:03
Python - Tuned SARIMAX Model
-
Урок 60.
00:04:29
Python - Forecasting
-
Урок 61.
00:03:55
Python - Visualization and Export
-
Урок 62.
00:01:49
SARIMAX Pros and Cons
-
Урок 63.
00:01:36
LinkedIn Silverkite Game Plan
-
Урок 64.
00:03:09
LinkedIn Silverkite
-
Урок 65.
00:03:12
Silverkite vs. Prophet
-
Урок 66.
00:10:06
Python - Libraries and Data
-
Урок 67.
00:03:37
Python - Preparing Data
-
Урок 68.
00:02:48
Python - Metadata
-
Урок 69.
00:04:21
Silverkite Components
-
Урок 70.
00:01:57
Growth Terms
-
Урок 71.
00:02:05
Python - Growth Terms
-
Урок 72.
00:03:21
Seasonality Terms
-
Урок 73.
00:02:07
Python - Seasonality
-
Урок 74.
00:03:32
Python - Available Countries and Holidays
-
Урок 75.
00:06:22
Python - Holidays
-
Урок 76.
00:01:23
Python - Changepoints
-
Урок 77.
00:01:16
Python - Regressors
-
Урок 78.
00:01:55
Lagged Regressors
-
Урок 79.
00:01:38
Python - Lagged Regressors
-
Урок 80.
00:02:20
Python - Autoregression
-
Урок 81.
00:02:39
Fitting Algorithms Possibilities
-
Урок 82.
00:07:53
Ridge Regression
-
Урок 83.
00:03:45
XGBoost
-
Урок 84.
00:07:04
Boosting
-
Урок 85.
00:02:57
Feature Sampling
-
Урок 86.
00:02:39
Python - Custom Fit Algorithm
-
Урок 87.
00:02:49
Python - Silverkite Model
-
Урок 88.
00:08:28
Python - Cross-Validation Configuration
-
Урок 89.
00:06:02
Python - SIlverkite Parameter Tuning
-
Урок 90.
00:08:02
Python - Visualization and Preparing Results
-
Урок 91.
00:06:07
Python - Exporting Best Parameters
-
Урок 92.
00:03:34
Python - Preparing Script
-
Урок 93.
00:07:52
Python - Best Parameters and Silverkite Model
-
Урок 94.
00:06:27
Python - Summary and Visualization
-
Урок 95.
00:03:07
Python - Exporting Forecasts
-
Урок 96.
00:02:10
Pros and Cons
-
Урок 97.
00:02:14
Recurrent Neural Networks (RNN) Long Short-Term Memory (LSTM) Game Plan
-
Урок 98.
00:05:59
Simple Neural Network
-
Урок 99.
00:03:28
Recurrent Neural Networks (RNN)
-
Урок 100.
00:05:32
Long Short-Term Memory (LSTM)
-
Урок 101.
00:05:21
Python - Libraries and Data
-
Урок 102.
00:04:56
Python - Time Series Objects
-
Урок 103.
00:09:02
Python - Time Variables
-
Урок 104.
00:09:04
Python - Scaling Variables
-
Урок 105.
00:02:15
LSTM Parameters
-
Урок 106.
00:08:58
Python - LSTM Model
-
Урок 107.
00:04:23
Python - Cross-Validation
-
Урок 108.
00:10:22
Python - CV Performance
-
Урок 109.
00:04:22
Python - Parameter Grid
-
Урок 110.
00:07:19
Python - Parameter Tuning (Round 1)
-
Урок 111.
00:06:43
Python - Parameter Tuning (Round 2)
-
Урок 112.
00:02:29
Python - Parameter Tuning (Final Results)
-
Урок 113.
00:04:00
Python - Preparing Script
-
Урок 114.
00:03:48
Python - Preparing Inputs
-
Урок 115.
00:04:18
Python - Tuned LSTM Model
-
Урок 116.
00:04:05
Python - Predictions and Exporting
-
Урок 117.
00:02:21
LSTM Pros and Cons
-
Урок 118.
00:01:22
Ensemble Game Plan
-
Урок 119.
00:04:44
Ensemble Mechanism
-
Урок 120.
00:07:24
Python - Preparing Script and Loading Predictions
-
Урок 121.
00:05:03
Python - Loading Errors
-
Урок 122.
00:04:56
Python - Forecasting Weights
-
Урок 123.
00:03:32
Python - Ensemble Forecast and Visualization
-
Урок 124.
00:02:18
Ensemble Pros and Cons