Урок 1. 00:05:04
Course Introduction
Урок 2. 00:02:13
Course Material
Урок 3. 00:05:16
Why Forecasting Matters
Урок 4. 00:01:05
Game Plan
Урок 5. 00:02:35
TIme Series Data
Урок 6. 00:01:44
Case Study Briefing
Урок 7. 00:04:43
Python - Directory and Libraries
Урок 8. 00:02:52
Python - Loading the Data
Урок 9. 00:01:30
Python - Renaming Variable
Урок 10. 00:02:34
Python - Summary Statistics
Урок 11. 00:02:41
Additive vs. Multiplicative Seasonality
Урок 12. 00:08:19
Python - Seasonal Decomposition
Урок 13. 00:05:08
Python - Seasonal Graphs
Урок 14. 00:05:32
Python - Visualization - Basic Plot
Урок 15. 00:05:59
Python - Visualization - Customization
Урок 16. 00:06:11
Python - Visualization -Adding Events
Урок 17. 00:02:19
Python - Correlation
Урок 18. 00:02:02
Auto-Correlation Plots
Урок 19. 00:03:21
Python - Auto-Correlation Plot
Урок 20. 00:02:31
Python - Useful Commands Template
Урок 21. 00:01:37
Facebook Prophet Game Plan
Урок 22. 00:04:43
Structural Time Series and Facebook Prophet
Урок 23. 00:03:51
Python - Preparing the Script
Урок 24. 00:02:05
Python - Date Variable
Урок 25. 00:04:09
Python - Easter
Урок 26. 00:01:25
Python - Thanksgiving
Урок 27. 00:02:33
Python - Wrapping Up the Events
Урок 28. 00:02:05
Facebook Prophet Parameters
Урок 29. 00:03:50
Facebook Prophet Model
Урок 30. 00:03:49
Cross-Validation
Урок 31. 00:05:30
Python - Cross-Validation
Урок 32. 00:04:38
Assessing Model Errors
Урок 33. 00:07:53
Python - Cross-Validation Performance and Plot
Урок 34. 00:01:51
Parameter Tuning
Урок 35. 00:04:48
Python - Parameter Grid
Урок 36. 00:06:57
Python - Parameter Tuning
Урок 37. 00:06:56
Python - Best Parameters and Exporting
Урок 38. 00:05:07
Python - Building Script
Урок 39. 00:05:55
Python - Preparing Data Sets
Урок 40. 00:07:05
Python - Final Facebook Prophet Model
Урок 41. 00:07:37
Python - Forecasting
Урок 42. 00:05:16
Python - Exporting Forecast
Урок 43. 00:01:41
Facebook Prophet Pros and Cons
Урок 44. 00:01:53
SARIMAX Game Plan
Урок 45. 00:03:06
ARIMA
Урок 46. 00:03:30
Python - Preparing Script
Урок 47. 00:01:55
Auto-Regressive
Урок 48. 00:04:34
Integrated
Урок 49. 00:05:45
Python - Stationarity and Differencing
Урок 50. 00:02:35
Moving Average Component
Урок 51. 00:03:16
Optimization Factors
Урок 52. 00:05:12
Python - SARIMAX Model
Урок 53. 00:08:19
Python - Cross-Validation
Урок 54. 00:03:33
Python - Parameter Grid
Урок 55. 00:04:15
Python - Parameter Tuning
Урок 56. 00:04:27
Python - Exporting Best Parameters
Урок 57. 00:03:28
Python - Preparing the Script
Урок 58. 00:02:57
Python - Preparing Data
Урок 59. 00:04:03
Python - Tuned SARIMAX Model
Урок 60. 00:04:29
Python - Forecasting
Урок 61. 00:03:55
Python - Visualization and Export
Урок 62. 00:01:49
SARIMAX Pros and Cons
Урок 63. 00:01:36
LinkedIn Silverkite Game Plan
Урок 64. 00:03:09
LinkedIn Silverkite
Урок 65. 00:03:12
Silverkite vs. Prophet
Урок 66. 00:10:06
Python - Libraries and Data
Урок 67. 00:03:37
Python - Preparing Data
Урок 68. 00:02:48
Python - Metadata
Урок 69. 00:04:21
Silverkite Components
Урок 70. 00:01:57
Growth Terms
Урок 71. 00:02:05
Python - Growth Terms
Урок 72. 00:03:21
Seasonality Terms
Урок 73. 00:02:07
Python - Seasonality
Урок 74. 00:03:32
Python - Available Countries and Holidays
Урок 75. 00:06:22
Python - Holidays
Урок 76. 00:01:23
Python - Changepoints
Урок 77. 00:01:16
Python - Regressors
Урок 78. 00:01:55
Lagged Regressors
Урок 79. 00:01:38
Python - Lagged Regressors
Урок 80. 00:02:20
Python - Autoregression
Урок 81. 00:02:39
Fitting Algorithms Possibilities
Урок 82. 00:07:53
Ridge Regression
Урок 83. 00:03:45
XGBoost
Урок 84. 00:07:04
Boosting
Урок 85. 00:02:57
Feature Sampling
Урок 86. 00:02:39
Python - Custom Fit Algorithm
Урок 87. 00:02:49
Python - Silverkite Model
Урок 88. 00:08:28
Python - Cross-Validation Configuration
Урок 89. 00:06:02
Python - SIlverkite Parameter Tuning
Урок 90. 00:08:02
Python - Visualization and Preparing Results
Урок 91. 00:06:07
Python - Exporting Best Parameters
Урок 92. 00:03:34
Python - Preparing Script
Урок 93. 00:07:52
Python - Best Parameters and Silverkite Model
Урок 94. 00:06:27
Python - Summary and Visualization
Урок 95. 00:03:07
Python - Exporting Forecasts
Урок 96. 00:02:10
Pros and Cons
Урок 97. 00:02:14
Recurrent Neural Networks (RNN) Long Short-Term Memory (LSTM) Game Plan
Урок 98. 00:05:59
Simple Neural Network
Урок 99. 00:03:28
Recurrent Neural Networks (RNN)
Урок 100. 00:05:32
Long Short-Term Memory (LSTM)
Урок 101. 00:05:21
Python - Libraries and Data
Урок 102. 00:04:56
Python - Time Series Objects
Урок 103. 00:09:02
Python - Time Variables
Урок 104. 00:09:04
Python - Scaling Variables
Урок 105. 00:02:15
LSTM Parameters
Урок 106. 00:08:58
Python - LSTM Model
Урок 107. 00:04:23
Python - Cross-Validation
Урок 108. 00:10:22
Python - CV Performance
Урок 109. 00:04:22
Python - Parameter Grid
Урок 110. 00:07:19
Python - Parameter Tuning (Round 1)
Урок 111. 00:06:43
Python - Parameter Tuning (Round 2)
Урок 112. 00:02:29
Python - Parameter Tuning (Final Results)
Урок 113. 00:04:00
Python - Preparing Script
Урок 114. 00:03:48
Python - Preparing Inputs
Урок 115. 00:04:18
Python - Tuned LSTM Model
Урок 116. 00:04:05
Python - Predictions and Exporting
Урок 117. 00:02:21
LSTM Pros and Cons
Урок 118. 00:01:22
Ensemble Game Plan
Урок 119. 00:04:44
Ensemble Mechanism
Урок 120. 00:07:24
Python - Preparing Script and Loading Predictions
Урок 121. 00:05:03
Python - Loading Errors
Урок 122. 00:04:56
Python - Forecasting Weights
Урок 123. 00:03:32
Python - Ensemble Forecast and Visualization
Урок 124. 00:02:18
Ensemble Pros and Cons