Этот материал находится в платной подписке. Оформи премиум подписку и смотри или слушай Time Series Forecasting with Python, а также все другие курсы, прямо сейчас!
Премиум
  1. Урок 1. 00:05:04
    Course Introduction
  2. Урок 2. 00:02:13
    Course Material
  3. Урок 3. 00:05:16
    Why Forecasting Matters
  4. Урок 4. 00:01:05
    Game Plan
  5. Урок 5. 00:02:35
    TIme Series Data
  6. Урок 6. 00:01:44
    Case Study Briefing
  7. Урок 7. 00:04:43
    Python - Directory and Libraries
  8. Урок 8. 00:02:52
    Python - Loading the Data
  9. Урок 9. 00:01:30
    Python - Renaming Variable
  10. Урок 10. 00:02:34
    Python - Summary Statistics
  11. Урок 11. 00:02:41
    Additive vs. Multiplicative Seasonality
  12. Урок 12. 00:08:19
    Python - Seasonal Decomposition
  13. Урок 13. 00:05:08
    Python - Seasonal Graphs
  14. Урок 14. 00:05:32
    Python - Visualization - Basic Plot
  15. Урок 15. 00:05:59
    Python - Visualization - Customization
  16. Урок 16. 00:06:11
    Python - Visualization -Adding Events
  17. Урок 17. 00:02:19
    Python - Correlation
  18. Урок 18. 00:02:02
    Auto-Correlation Plots
  19. Урок 19. 00:03:21
    Python - Auto-Correlation Plot
  20. Урок 20. 00:02:31
    Python - Useful Commands Template
  21. Урок 21. 00:01:37
    Facebook Prophet Game Plan
  22. Урок 22. 00:04:43
    Structural Time Series and Facebook Prophet
  23. Урок 23. 00:03:51
    Python - Preparing the Script
  24. Урок 24. 00:02:05
    Python - Date Variable
  25. Урок 25. 00:04:09
    Python - Easter
  26. Урок 26. 00:01:25
    Python - Thanksgiving
  27. Урок 27. 00:02:33
    Python - Wrapping Up the Events
  28. Урок 28. 00:02:05
    Facebook Prophet Parameters
  29. Урок 29. 00:03:50
    Facebook Prophet Model
  30. Урок 30. 00:03:49
    Cross-Validation
  31. Урок 31. 00:05:30
    Python - Cross-Validation
  32. Урок 32. 00:04:38
    Assessing Model Errors
  33. Урок 33. 00:07:53
    Python - Cross-Validation Performance and Plot
  34. Урок 34. 00:01:51
    Parameter Tuning
  35. Урок 35. 00:04:48
    Python - Parameter Grid
  36. Урок 36. 00:06:57
    Python - Parameter Tuning
  37. Урок 37. 00:06:56
    Python - Best Parameters and Exporting
  38. Урок 38. 00:05:07
    Python - Building Script
  39. Урок 39. 00:05:55
    Python - Preparing Data Sets
  40. Урок 40. 00:07:05
    Python - Final Facebook Prophet Model
  41. Урок 41. 00:07:37
    Python - Forecasting
  42. Урок 42. 00:05:16
    Python - Exporting Forecast
  43. Урок 43. 00:01:41
    Facebook Prophet Pros and Cons
  44. Урок 44. 00:01:53
    SARIMAX Game Plan
  45. Урок 45. 00:03:06
    ARIMA
  46. Урок 46. 00:03:30
    Python - Preparing Script
  47. Урок 47. 00:01:55
    Auto-Regressive
  48. Урок 48. 00:04:34
    Integrated
  49. Урок 49. 00:05:45
    Python - Stationarity and Differencing
  50. Урок 50. 00:02:35
    Moving Average Component
  51. Урок 51. 00:03:16
    Optimization Factors
  52. Урок 52. 00:05:12
    Python - SARIMAX Model
  53. Урок 53. 00:08:19
    Python - Cross-Validation
  54. Урок 54. 00:03:33
    Python - Parameter Grid
  55. Урок 55. 00:04:15
    Python - Parameter Tuning
  56. Урок 56. 00:04:27
    Python - Exporting Best Parameters
  57. Урок 57. 00:03:28
    Python - Preparing the Script
  58. Урок 58. 00:02:57
    Python - Preparing Data
  59. Урок 59. 00:04:03
    Python - Tuned SARIMAX Model
  60. Урок 60. 00:04:29
    Python - Forecasting
  61. Урок 61. 00:03:55
    Python - Visualization and Export
  62. Урок 62. 00:01:49
    SARIMAX Pros and Cons
  63. Урок 63. 00:01:36
    LinkedIn Silverkite Game Plan
  64. Урок 64. 00:03:09
    LinkedIn Silverkite
  65. Урок 65. 00:03:12
    Silverkite vs. Prophet
  66. Урок 66. 00:10:06
    Python - Libraries and Data
  67. Урок 67. 00:03:37
    Python - Preparing Data
  68. Урок 68. 00:02:48
    Python - Metadata
  69. Урок 69. 00:04:21
    Silverkite Components
  70. Урок 70. 00:01:57
    Growth Terms
  71. Урок 71. 00:02:05
    Python - Growth Terms
  72. Урок 72. 00:03:21
    Seasonality Terms
  73. Урок 73. 00:02:07
    Python - Seasonality
  74. Урок 74. 00:03:32
    Python - Available Countries and Holidays
  75. Урок 75. 00:06:22
    Python - Holidays
  76. Урок 76. 00:01:23
    Python - Changepoints
  77. Урок 77. 00:01:16
    Python - Regressors
  78. Урок 78. 00:01:55
    Lagged Regressors
  79. Урок 79. 00:01:38
    Python - Lagged Regressors
  80. Урок 80. 00:02:20
    Python - Autoregression
  81. Урок 81. 00:02:39
    Fitting Algorithms Possibilities
  82. Урок 82. 00:07:53
    Ridge Regression
  83. Урок 83. 00:03:45
    XGBoost
  84. Урок 84. 00:07:04
    Boosting
  85. Урок 85. 00:02:57
    Feature Sampling
  86. Урок 86. 00:02:39
    Python - Custom Fit Algorithm
  87. Урок 87. 00:02:49
    Python - Silverkite Model
  88. Урок 88. 00:08:28
    Python - Cross-Validation Configuration
  89. Урок 89. 00:06:02
    Python - SIlverkite Parameter Tuning
  90. Урок 90. 00:08:02
    Python - Visualization and Preparing Results
  91. Урок 91. 00:06:07
    Python - Exporting Best Parameters
  92. Урок 92. 00:03:34
    Python - Preparing Script
  93. Урок 93. 00:07:52
    Python - Best Parameters and Silverkite Model
  94. Урок 94. 00:06:27
    Python - Summary and Visualization
  95. Урок 95. 00:03:07
    Python - Exporting Forecasts
  96. Урок 96. 00:02:10
    Pros and Cons
  97. Урок 97. 00:02:14
    Recurrent Neural Networks (RNN) Long Short-Term Memory (LSTM) Game Plan
  98. Урок 98. 00:05:59
    Simple Neural Network
  99. Урок 99. 00:03:28
    Recurrent Neural Networks (RNN)
  100. Урок 100. 00:05:32
    Long Short-Term Memory (LSTM)
  101. Урок 101. 00:05:21
    Python - Libraries and Data
  102. Урок 102. 00:04:56
    Python - Time Series Objects
  103. Урок 103. 00:09:02
    Python - Time Variables
  104. Урок 104. 00:09:04
    Python - Scaling Variables
  105. Урок 105. 00:02:15
    LSTM Parameters
  106. Урок 106. 00:08:58
    Python - LSTM Model
  107. Урок 107. 00:04:23
    Python - Cross-Validation
  108. Урок 108. 00:10:22
    Python - CV Performance
  109. Урок 109. 00:04:22
    Python - Parameter Grid
  110. Урок 110. 00:07:19
    Python - Parameter Tuning (Round 1)
  111. Урок 111. 00:06:43
    Python - Parameter Tuning (Round 2)
  112. Урок 112. 00:02:29
    Python - Parameter Tuning (Final Results)
  113. Урок 113. 00:04:00
    Python - Preparing Script
  114. Урок 114. 00:03:48
    Python - Preparing Inputs
  115. Урок 115. 00:04:18
    Python - Tuned LSTM Model
  116. Урок 116. 00:04:05
    Python - Predictions and Exporting
  117. Урок 117. 00:02:21
    LSTM Pros and Cons
  118. Урок 118. 00:01:22
    Ensemble Game Plan
  119. Урок 119. 00:04:44
    Ensemble Mechanism
  120. Урок 120. 00:07:24
    Python - Preparing Script and Loading Predictions
  121. Урок 121. 00:05:03
    Python - Loading Errors
  122. Урок 122. 00:04:56
    Python - Forecasting Weights
  123. Урок 123. 00:03:32
    Python - Ensemble Forecast and Visualization
  124. Урок 124. 00:02:18
    Ensemble Pros and Cons