-
Урок 1.
00:00:51
Welcome
-
Урок 2.
00:02:01
Installing Jupyter in a Virtual Environment
-
Урок 3.
00:01:37
Running in Github Codespaces
-
Урок 4.
00:02:09
How to use Jupyter
-
Урок 5.
00:01:11
How to use VS Code
-
Урок 6.
00:00:27
Remember the Exercises
-
Урок 7.
00:00:34
Intro csv v2
-
Урок 8.
00:05:26
Loading CSV data from a ZIP file with Pandas and Pyarrow
-
Урок 9.
00:06:35
Summary stats in Pandas using describe, dtypes, and quantile
-
Урок 10.
00:05:36
Pearson and Spearman Correlations in Pandas and Heatmaps
-
Урок 11.
00:04:50
Understanding Pandas Categoricals with value_counts and Cross Tabulations
-
Урок 12.
00:08:37
Visualizations in Pandas, with Histograms, Scatterplots, and Barplots
-
Урок 13.
00:00:25
Summary
-
Урок 14.
00:00:42
Intro excel
-
Урок 15.
00:01:46
Create an Excel in Pandas with to_excel
-
Урок 16.
00:01:31
Read Excel file in Pandas with read_excel and Pyarrow
-
Урок 17.
00:03:03
Understanding Counts and Frequencies of Missing Data in Pandas with isna, any, sum, and mean
-
Урок 18.
00:02:07
Quantifying Strings with filter and value_counts
-
Урок 19.
00:03:33
Understanding Numbers with Correlations, Scatterplots, and Histograms
-
Урок 20.
00:01:49
Writing and Formatting Excel Sheets in Pandas with to_excel and XlsxWriter add_format
-
Урок 21.
00:00:11
Summary
-
Урок 22.
00:00:15
Intro
-
Урок 23.
00:00:57
Loading Data for Merging with Pyarrow
-
Урок 24.
00:01:34
Merging Dataframes with the merge method and left_on, right_on parameters
-
Урок 25.
00:02:51
Validating one to one and one to many merges
-
Урок 26.
00:02:36
Debugging Merging by piping dataframe size
-
Урок 27.
00:02:19
Cleanup columns after merging with loc
-
Урок 28.
00:00:56
Export Merged data to Excel
-
Урок 29.
00:00:31
Merging summary
-
Урок 30.
00:00:38
Intro grouping
-
Урок 31.
00:00:33
Loading Retail Data from Excel into Pandas Dataframe
-
Урок 32.
00:00:49
Using Feather and Pyarrow to Speed up loading Retail Data in Pandas
-
Урок 33.
00:03:48
Exploratory Data Analysis (EDA) in Pandas with describe, histograms, and value_counts
-
Урок 34.
00:02:44
Aggregating in Pandas to Calculate Sales by Year
-
Урок 35.
00:06:06
Using Groupby in Pandas to visualize Sales by country
-
Урок 36.
00:03:36
Using Grouper in Pandas to Groupby by Month Frequency
-
Урок 37.
00:05:31
Grouping by Month and Country and Visualizing with a Line Plot
-
Урок 38.
00:00:26
Summary
-
Урок 39.
00:00:37
Intro cleaning
-
Урок 40.
00:00:47
Loading Multiple Files into a Single Pandas Datafarme with Glob
-
Урок 41.
00:02:47
Understanding the Heart Data to Cleanup
-
Урок 42.
00:00:44
Fixing the Age Column Type to Int8
-
Урок 43.
00:01:18
Converting the Numeric Sex Column into a String
-
Урок 44.
00:00:49
Converting the Chest Pain Column into an Int8
-
Урок 45.
00:02:25
Dealing with ? Characters in the Trestbps Numeric Column
-
Урок 46.
00:03:08
Creating a Function to Repeat Common Cleanup in the Chol Column
-
Урок 47.
00:01:05
Using the Cleanup Function for the Fbs Column
-
Урок 48.
00:01:28
Fixing the Restecg Column
-
Урок 49.
00:00:14
Fixing the Thalach Column
-
Урок 50.
00:00:15
Fixing the Exang Column
-
Урок 51.
00:00:23
Updating the Cleanup Function to Clean the Oldpeak Column
-
Урок 52.
00:00:19
Cleaning the Slope Column
-
Урок 53.
00:00:18
Cleaning the Ca Column
-
Урок 54.
00:00:39
Converting Numeric Values to Catgoricals with the Thal Column
-
Урок 55.
00:01:07
Fixing the Num Column
-
Урок 56.
00:00:50
Comparing Memory usage in Pandas with memory_usage
-
Урок 57.
00:04:19
Refactoring to a Function in Pandas for Cleanup
-
Урок 58.
00:00:06
Cleaning summary
-
Урок 59.
00:00:31
Intro time series air quality dataset
-
Урок 60.
00:00:51
Load CSV file from a Zip file with Pandas
-
Урок 61.
00:00:52
Checking for Missing Values and Shape in Pandas
-
Урок 62.
00:02:04
Parsing Dates Using Format Strings and to_datetime
-
Урок 63.
00:02:36
Rename columns in Pandas to Remove Invalid Characters
-
Урок 64.
00:00:52
Make a Function to Clean up Pandas Data
-
Урок 65.
00:00:57
Converting Dates to UTC in Pandas
-
Урок 66.
00:01:30
Converting Dates to Italian time in Pandas and pytz
-
Урок 67.
00:03:24
Making Line Plots for Time Series Data in Pandas
-
Урок 68.
00:03:27
Interpolating and Filling in Missing values in Pandas
-
Урок 69.
00:02:30
Resampling Time Series Data in Pandas with resample
-
Урок 70.
00:01:45
Creating 7 Day Rolling Averages in Pandas with rolling
-
Урок 71.
00:00:16
Updating the Function with Cleanup Functionality
-
Урок 72.
00:00:22
Summary
-
Урок 73.
00:00:25
Intro text v2
-
Урок 74.
00:01:32
Load movie review text data from a directory
-
Урок 75.
00:00:55
Exploring the str attribute in Pandas for String manipulation
-
Урок 76.
00:02:44
Using Spacy to Remove Stop words in Pandas
-
Урок 77.
00:01:44
Using scikit-learn to calculate Tfidf for Pandas text
-
Урок 78.
00:02:40
Using XGBoost to Create a Classification Model
-
Урок 79.
00:01:40
Predicting Values with XGBoost and Pandas
-
Урок 80.
00:00:21
Intro v2
-
Урок 81.
00:02:00
Combining Multiple Datasets with Pandas and concat
-
Урок 82.
00:05:01
Exploring heart disease with aggregations and scatterplots
-
Урок 83.
00:04:59
Preparing a Pandas Dataset to Create an XGBoost Model
-
Урок 84.
00:06:02
Tuning an XGBoost Model with Hyperopt
-
Урок 85.
00:01:48
Using a Confusion matrix to Understand the Model
-
Урок 86.
00:00:09
Ml summary
-
Урок 87.
00:00:13
Intro SQL
-
Урок 88.
00:01:32
Load CSV data into a Pandas dataframe and cleaning it
-
Урок 89.
00:00:55
Using SqlAlchemy to Connect to a SQLite Database
-
Урок 90.
00:00:31
Create a database table with Pandas using to_sql
-
Урок 91.
00:01:19
Query a SQLite table from Pandas using read_sql
-
Урок 92.
00:01:57
Query a SQLite table with Pandas
-
Урок 93.
00:01:54
Visualize SQLite Data using Pandas
-
Урок 94.
00:00:27
Summary SQL
-
Урок 95.
00:00:11
Intro plotly
-
Урок 96.
00:00:22
Load CSV data into Pandas dataframe
-
Урок 97.
00:01:45
Clean Pandas data with a function for plotly
-
Урок 98.
00:02:01
Creating a Line Plot in Plotly for Pandas
-
Урок 99.
00:02:29
Creating a Bar plot in Plotly
-
Урок 100.
00:03:41
Creating a Scatter plot in Plotly
-
Урок 101.
00:01:43
Creating a Dashboard with Dash and Plotly Graphs
-
Урок 102.
00:01:10
Creating a Plotly Dashboard using Dash with Widgets
-
Урок 103.
00:00:08
Summary plotly
-
Урок 104.
00:01:17
Conclusion