Этот материал находится в платной подписке. Оформи премиум подписку и смотри или слушай Machine Learning 101 with Scikit-learn and StatsModels, а также все другие курсы, прямо сейчас!
Премиум
  1. Урок 1. 00:03:56
    What Does the Course Cover?
  2. Урок 2. 00:00:51
    Setting Up the Environment - An Introduction (Do Not Skip, Please)!
  3. Урок 3. 00:04:54
    Why Python and Why Jupyter?
  4. Урок 4. 00:03:04
    Installing Anaconda
  5. Урок 5. 00:02:28
    The Jupyter Dashboard - Part 1
  6. Урок 6. 00:05:15
    The Jupyter Dashboard - Part 2
  7. Урок 7. 00:01:19
    Installing sklearn
  8. Урок 8. 00:01:28
    Introduction to Regression Analysis
  9. Урок 9. 00:05:51
    The Linear Regression Model
  10. Урок 10. 00:01:44
    Correlation vs Regression
  11. Урок 11. 00:01:26
    Geometrical Representation
  12. Урок 12. 00:04:40
    Python Packages Installation
  13. Урок 13. 00:07:12
    Simple Linear Regression in Python
  14. Урок 14. 00:01:22
    What is Seaborn?
  15. Урок 15. 00:05:48
    What Does the StatsModels Summary Regression Table Tell us?
  16. Урок 16. 00:03:38
    SST, SSR, and SSE
  17. Урок 17. 00:03:14
    The Ordinary Least Squares (OLS)
  18. Урок 18. 00:05:31
    Goodness of Fit: The R-Squared
  19. Урок 19. 00:02:56
    The Multiple Linear Regression Model
  20. Урок 20. 00:06:01
    Adjusted R-Squared
  21. Урок 21. 00:02:02
    F-Statistic and F-Test for a Linear Regression
  22. Урок 22. 00:02:22
    Assumptions of the OLS Framework
  23. Урок 23. 00:01:51
    A1: Linearity
  24. Урок 24. 00:04:10
    A2: No Endogeneity
  25. Урок 25. 00:05:48
    A3: Normality and Homoscedasticity
  26. Урок 26. 00:03:32
    A4: No Autocorrelation
  27. Урок 27. 00:03:27
    A5: No Multicollinearity
  28. Урок 28. 00:06:44
    Dealing with Categorical Data
  29. Урок 29. 00:03:30
    Making Predictions
  30. Урок 30. 00:02:15
    What is sklearn?
  31. Урок 31. 00:01:57
    Game Plan for sklearn
  32. Урок 32. 00:05:39
    Simple Linear Regression with sklearn
  33. Урок 33. 00:04:50
    Simple Linear Regression with sklearn - Summary Table
  34. Урок 34. 00:03:11
    Multiple Linear Regression with sklearn
  35. Урок 35. 00:04:46
    Adjusted R-Squared
  36. Урок 36. 00:04:42
    Feature Selection through p-values (F-regression)
  37. Урок 37. 00:02:11
    Creating a Summary Table with the p-values
  38. Урок 38. 00:05:39
    Feature Scaling
  39. Урок 39. 00:05:23
    Feature Selection through Standardization
  40. Урок 40. 00:03:54
    Making Predictions with Standardized Coefficients
  41. Урок 41. 00:02:43
    Underfitting and Overfitting
  42. Урок 42. 00:06:55
    Training and Testing
  43. Урок 43. 00:12:00
    Practical Example (Part 1)
  44. Урок 44. 00:06:13
    Practical Example (Part 2)
  45. Урок 45. 00:03:16
    Practical Example (Part 3)
  46. Урок 46. 00:08:11
    Practical Example (Part 4)
  47. Урок 47. 00:07:35
    Practical Example (Part 5)
  48. Урок 48. 00:01:20
    Introduction to Logistic Regression
  49. Урок 49. 00:04:43
    A Simple Example of a Logistic Regression in Python
  50. Урок 50. 00:04:01
    What is the Difference Between a Logistic and a Logit Function?
  51. Урок 51. 00:02:49
    Your First Logistic Regression
  52. Урок 52. 00:02:27
    A Coding Tip (optional)
  53. Урок 53. 00:04:07
    Going through the Regression Summary Table
  54. Урок 54. 00:04:31
    Interpreting the Odds Ratio
  55. Урок 55. 00:04:33
    Dummies in a Logistic Regression
  56. Урок 56. 00:03:22
    Assessing the Accuracy of a Classification Model
  57. Урок 57. 00:03:44
    Underfitting and Overfitting
  58. Урок 58. 00:05:06
    Testing our Model and Bulding a Confusion Matrix
  59. Урок 59. 00:03:42
    Introduction to Cluster Analysis
  60. Урок 60. 00:04:32
    Examples of Clustering
  61. Урок 61. 00:02:33
    Classification vs Clustering
  62. Урок 62. 00:03:20
    Math Concepts Needed to Proceed
  63. Урок 63. 00:04:42
    K-Means Clustering
  64. Урок 64. 00:07:49
    A Hands on Example of K-Means
  65. Урок 65. 00:02:51
    Categorical Data in Cluster Analysis
  66. Урок 66. 00:06:12
    The Elbow Method or How to Choose the Number of Clusters
  67. Урок 67. 00:03:24
    Pros and Cons of K-Means
  68. Урок 68. 00:04:33
    Standardization of Features when Clustering
  69. Урок 69. 00:01:32
    Cluster Analysis and Regression Analysis
  70. Урок 70. 00:06:04
    Practical Example: Market Segmentation (Part 1)
  71. Урок 71. 00:06:59
    Practical Example: Market Segmentation (Part 2)
  72. Урок 72. 00:04:48
    What Can be Done with Cluster Analysis?
  73. Урок 73. 00:03:40
    Other Types of Clustering
  74. Урок 74. 00:05:22
    The Dendrogram
  75. Урок 75. 00:04:35
    Heatmaps