-
Урок 1. 00:03:56What Does the Course Cover?
-
Урок 2. 00:00:51Setting Up the Environment - An Introduction (Do Not Skip, Please)!
-
Урок 3. 00:04:54Why Python and Why Jupyter?
-
Урок 4. 00:03:04Installing Anaconda
-
Урок 5. 00:02:28The Jupyter Dashboard - Part 1
-
Урок 6. 00:05:15The Jupyter Dashboard - Part 2
-
Урок 7. 00:01:19Installing sklearn
-
Урок 8. 00:01:28Introduction to Regression Analysis
-
Урок 9. 00:05:51The Linear Regression Model
-
Урок 10. 00:01:44Correlation vs Regression
-
Урок 11. 00:01:26Geometrical Representation
-
Урок 12. 00:04:40Python Packages Installation
-
Урок 13. 00:07:12Simple Linear Regression in Python
-
Урок 14. 00:01:22What is Seaborn?
-
Урок 15. 00:05:48What Does the StatsModels Summary Regression Table Tell us?
-
Урок 16. 00:03:38SST, SSR, and SSE
-
Урок 17. 00:03:14The Ordinary Least Squares (OLS)
-
Урок 18. 00:05:31Goodness of Fit: The R-Squared
-
Урок 19. 00:02:56The Multiple Linear Regression Model
-
Урок 20. 00:06:01Adjusted R-Squared
-
Урок 21. 00:02:02F-Statistic and F-Test for a Linear Regression
-
Урок 22. 00:02:22Assumptions of the OLS Framework
-
Урок 23. 00:01:51A1: Linearity
-
Урок 24. 00:04:10A2: No Endogeneity
-
Урок 25. 00:05:48A3: Normality and Homoscedasticity
-
Урок 26. 00:03:32A4: No Autocorrelation
-
Урок 27. 00:03:27A5: No Multicollinearity
-
Урок 28. 00:06:44Dealing with Categorical Data
-
Урок 29. 00:03:30Making Predictions
-
Урок 30. 00:02:15What is sklearn?
-
Урок 31. 00:01:57Game Plan for sklearn
-
Урок 32. 00:05:39Simple Linear Regression with sklearn
-
Урок 33. 00:04:50Simple Linear Regression with sklearn - Summary Table
-
Урок 34. 00:03:11Multiple Linear Regression with sklearn
-
Урок 35. 00:04:46Adjusted R-Squared
-
Урок 36. 00:04:42Feature Selection through p-values (F-regression)
-
Урок 37. 00:02:11Creating a Summary Table with the p-values
-
Урок 38. 00:05:39Feature Scaling
-
Урок 39. 00:05:23Feature Selection through Standardization
-
Урок 40. 00:03:54Making Predictions with Standardized Coefficients
-
Урок 41. 00:02:43Underfitting and Overfitting
-
Урок 42. 00:06:55Training and Testing
-
Урок 43. 00:12:00Practical Example (Part 1)
-
Урок 44. 00:06:13Practical Example (Part 2)
-
Урок 45. 00:03:16Practical Example (Part 3)
-
Урок 46. 00:08:11Practical Example (Part 4)
-
Урок 47. 00:07:35Practical Example (Part 5)
-
Урок 48. 00:01:20Introduction to Logistic Regression
-
Урок 49. 00:04:43A Simple Example of a Logistic Regression in Python
-
Урок 50. 00:04:01What is the Difference Between a Logistic and a Logit Function?
-
Урок 51. 00:02:49Your First Logistic Regression
-
Урок 52. 00:02:27A Coding Tip (optional)
-
Урок 53. 00:04:07Going through the Regression Summary Table
-
Урок 54. 00:04:31Interpreting the Odds Ratio
-
Урок 55. 00:04:33Dummies in a Logistic Regression
-
Урок 56. 00:03:22Assessing the Accuracy of a Classification Model
-
Урок 57. 00:03:44Underfitting and Overfitting
-
Урок 58. 00:05:06Testing our Model and Bulding a Confusion Matrix
-
Урок 59. 00:03:42Introduction to Cluster Analysis
-
Урок 60. 00:04:32Examples of Clustering
-
Урок 61. 00:02:33Classification vs Clustering
-
Урок 62. 00:03:20Math Concepts Needed to Proceed
-
Урок 63. 00:04:42K-Means Clustering
-
Урок 64. 00:07:49A Hands on Example of K-Means
-
Урок 65. 00:02:51Categorical Data in Cluster Analysis
-
Урок 66. 00:06:12The Elbow Method or How to Choose the Number of Clusters
-
Урок 67. 00:03:24Pros and Cons of K-Means
-
Урок 68. 00:04:33Standardization of Features when Clustering
-
Урок 69. 00:01:32Cluster Analysis and Regression Analysis
-
Урок 70. 00:06:04Practical Example: Market Segmentation (Part 1)
-
Урок 71. 00:06:59Practical Example: Market Segmentation (Part 2)
-
Урок 72. 00:04:48What Can be Done with Cluster Analysis?
-
Урок 73. 00:03:40Other Types of Clustering
-
Урок 74. 00:05:22The Dendrogram
-
Урок 75. 00:04:35Heatmaps
- Категории
- Источники
- Все курсы
- Разделы
- Книги