Этот материал находится в платной подписке. Оформи премиум подписку и смотри или слушай Learn to Build Machine Learning Systems That Don't Suck, а также все другие курсы, прямо сейчас!
Премиум
  • Урок 1. 00:14:36
    001 - Lesson 1 - Getting Started
  • Урок 2. 00:18:35
    002 - Lesson 2 - Preparing Your Local Environment
  • Урок 3. 00:32:36
    003 - Lesson 3 - Introduction to Metaflow
  • Урок 4. 00:35:06
    004 - Lesson 4 - Training the Model
  • Урок 5. 01:10:18
    005 - Lesson 5 - The Training Pipeline
  • Урок 6. 00:41:27
    006 - Lesson 6 - Building a Custom Inference Process
  • Урок 7. 00:25:45
    007 - Lesson 7 - Deploying The Model
  • Урок 8. 00:34:38
    008 - Lesson 8 - The Endpoint Pipeline
  • Урок 9. 00:21:07
    009 - Lesson 9 - Monitoring The Model
  • Урок 10. 00:26:08
    010 - Lesson 10 - The Monitoring Pipeline
  • Урок 11. 00:38:25
    011 - Lesson 11 - Production Pipelines in Amazon Web Services
  • Урок 12. 00:23:10
    012 - Lesson 12 - Deploying the Model to SageMaker
  • Урок 13. 00:23:09
    013 - Lesson 13 - The Deployment Pipeline
  • Урок 14. 00:08:14
    014 - Lesson 14 - Monitoring the SageMaker Endpoint
  • Урок 15. 00:31:51
    015 - Lesson 15 - Running Pipelines Remotely
  • Урок 16. 00:53:47
    016 - Session 1 - Introduction and Initial Setup
  • Урок 17. 00:25:13
    017 - Session 2 - Exploratory Data Analysis
  • Урок 18. 01:17:15
    018 - Session 3 - Splitting and Transforming the Data
  • Урок 19. 00:56:18
    019 - Session 4 - Training the Model
  • Урок 20. 00:31:30
    020 - Session 5 - Custom Training Container
  • Урок 21. 00:22:02
    021 - Session 6 - Tuning the Model
  • Урок 22. 00:31:00
    022 - Session 7 - Evaluating the Model
  • Урок 23. 00:17:21
    023 - Session 8 - Registering the Model
  • Урок 24. 00:14:23
    024 - Session 9 - Conditional Registration
  • Урок 25. 00:17:52
    025 - Session 10 - Serving the Model
  • Урок 26. 00:17:06
    026 - Session 11 - Deploying the Model
  • Урок 27. 00:38:34
    027 - Session 12 - Deploying From the Pipeline
  • Урок 28. 00:14:18
    028 - Session 13 - Deploying From an Event
  • Урок 29. 00:31:28
    029 - Session 14 - Building an Inference Pipeline
  • Урок 30. 00:22:59
    030 - Session 15 - Custom Inference Script
  • Урок 31. 00:19:43
    031 - Session 16 - Data Quality Baseline
  • Урок 32. 00:20:28
    032 - Session 17 - Model Quality Baseline
  • Урок 33. 00:26:18
    033 - Session 18 - Data Monitoring
  • Урок 34. 00:15:44
    034 - Session 19 - Model Monitoring
  • Урок 35. 00:14:16
    035 - Session 20 - Shadow Deployments