Этот материал находится в платной подписке. Оформи премиум подписку и смотри или слушай The Product Management for AI & Data Science Course, а также все другие курсы, прямо сейчас!
Купить сейчас
  • Урок 1. 00:04:04
    Introduction
  • Урок 2. 00:02:53
    Course Overview
  • Урок 3. 00:03:05
    Growing Importance of an AI & Data PM
  • Урок 4. 00:04:49
    The Role of a Product Manager
  • Урок 5. 00:03:26
    Differentiation of a PM in AI & Data
  • Урок 6. 00:04:04
    Product Management vs. Project Management
  • Урок 7. 00:03:50
    A Product Manager as an Analytics Translator
  • Урок 8. 00:03:00
    Data Analysis vs. Data Science
  • Урок 9. 00:05:49
    A Traditional Algorithm vs. AI
  • Урок 10. 00:06:03
    Explaining Machine Learning
  • Урок 11. 00:05:16
    Explaining Deep Learning
  • Урок 12. 00:06:04
    When to use Machine Learning vs. Deep Learning
  • Урок 13. 00:04:54
    Supervised, Unsupervised, & Reinforcement Learning
  • Урок 14. 00:04:55
    AI Business Model Innovations
  • Урок 15. 00:04:00
    When to Use AI
  • Урок 16. 00:03:32
    SWOT Analysis
  • Урок 17. 00:04:12
    Building a Hypothesis
  • Урок 18. 00:03:47
    Testing a Hypothesis
  • Урок 19. 00:04:02
    AI Business Canvas
  • Урок 20. 00:03:59
    User Experience for Data & AI
  • Урок 21. 00:04:20
    Getting to the Core Problem
  • Урок 22. 00:04:28
    User Research Methods
  • Урок 23. 00:04:21
    Developing User Personas
  • Урок 24. 00:04:26
    Prototyping with AI
  • Урок 25. 00:05:38
    Data Growth Strategy
  • Урок 26. 00:02:59
    Open Data
  • Урок 27. 00:03:10
    Company Data
  • Урок 28. 00:06:45
    Crowdsourcing Labeled Data
  • Урок 29. 00:04:17
    New Feature Data
  • Урок 30. 00:03:30
    Acquisition/Purchase Data Collection
  • Урок 31. 00:03:51
    Databases, Data Warehouses, & Data Lakes
  • Урок 32. 00:03:23
    AI Flywheel Effect
  • Урок 33. 00:03:16
    Top & Bottom Problem Solving
  • Урок 34. 00:04:28
    Product Ideation Techniques
  • Урок 35. 00:05:48
    Complexity vs. Benefit Prioritization
  • Урок 36. 00:05:45
    MVPs & MVDs (Minimum Viable Data)
  • Урок 37. 00:04:55
    Agile & Data Kanban
  • Урок 38. 00:05:08
    Who Should Buid Your Model
  • Урок 39. 00:04:31
    Enterpise AI
  • Урок 40. 00:04:33
    Machine Learning as a Service (MLaaS)
  • Урок 41. 00:03:27
    In-House AI & The Machine Learning Lifecycle
  • Урок 42. 00:04:43
    Timelines & Diminishing Returns
  • Урок 43. 00:04:40
    Setting a Model Performance Metric
  • Урок 44. 00:04:22
    Dividing Test Data
  • Урок 45. 00:03:16
    The Confusion Matrix
  • Урок 46. 00:03:49
    Precision, Recall & F1 Score
  • Урок 47. 00:06:24
    Optimizing for Experience
  • Урок 48. 00:03:47
    Error Recovery
  • Урок 49. 00:05:35
    Model Deployment Methods
  • Урок 50. 00:04:21
    Monitoring Models
  • Урок 51. 00:03:50
    Selecting a Feedback Metric
  • Урок 52. 00:03:47
    User Feedback Loops
  • Урок 53. 00:03:17
    Shadow Deployments
  • Урок 54. 00:04:56
    AI Hierarchy of Needs
  • Урок 55. 00:04:21
    AI Within an Organization
  • Урок 56. 00:04:54
    Roles in AI & Data Teams
  • Урок 57. 00:03:19
    Managing Team Workflow
  • Урок 58. 00:04:07
    Dual & Triple-Track Agile
  • Урок 59. 00:05:05
    Internal Stakeholder Management
  • Урок 60. 00:04:51
    Setting Data Expectations
  • Урок 61. 00:04:20
    Active Listening & Communication
  • Урок 62. 00:04:19
    Compelling Presentations with Storytelling
  • Урок 63. 00:04:58
    Running Effective Meetings
  • Урок 64. 00:03:39
    AI User Concerns
  • Урок 65. 00:05:11
    Bad Actors & Security
  • Урок 66. 00:05:48
    AI Amplifying Human Bias
  • Урок 67. 00:04:01
    Data Laws & Regulations